ENGINEERING MECHANICS LAB

(Mechanical Engineering)

Course code	23ME3251	Year	I	Semester	II	
Course	Professional	Branch	Branch ME Course Type		Lab	
Category	Core	Dianch	IVIL	Course Type	Lao	
Credits	1.5	L-T-P	0-0-3	Prerequisites	Nil	
Continuous		Semester				
Internal	30	End	70	Total Marks	100	
Evaluation		Evaluation				

Course Outcomes:

CO1: Evaluate the coefficient of friction between two different surfaces and between the inclined plane and the roller.

CO2: Verify Law of Polygon of forces and Law of Moment using force polygon and bell crank lever.

CO3: Determine the Centre of gravity and Moment of Inertia of different configurations.

CO4: Verify the equilibrium conditions of a rigid body under the action of different force systems.

Contribution of Course outcomes towards achievement of programme outcomes & Strength of correlations (High: 3, Medium: 2, Low: 1)

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO12	PSO 1	PSO 2
CO 1	3	3	2	1	2				1	1			3	1
CO 2	3	3	2	1	2				1	1			3	1
CO 3	3	3	2	1	2				1	1			3	1
CO 4	3	3	2	1	2				1	1			3	1
CO 5	3	3	2	1	2				1	1			3	1

	Syllabus			
S.No	Experiment			
		CO		
1	Verification of Law of Parallelogram of Forces	CO 2		
2	Verification of Law of Triangle of Forces	CO 2		
3	Verification of the Law of polygon for coplanar-concurrent forces acting on a	CO 2		
	particle in equilibrium and to find the value of unknown forces considering			
	particle to be in equilibrium using universal force table			
4	Determination of coefficient of Static and Rolling Frictions	CO 1		
5	Determination of Centre of Gravity of different shaped Plane Lamina	CO 3		
6	Verification of the conditions of equilibrium of a rigid body under the action of coplanar non-concurrent, parallel force system with the help of a simply	CO 4		
	supported beam			
7	Study of the systems of pulleys and draw the free body diagram of the system.	CO 4		

8	Determine the acceleration due to gravity using a compound pendulum	CO 4
9	Determine the Moment of Inertia of the compound pendulum about an axis	CO 3
	perpendicular to the plane of oscillation and passing through its centre of mass.	
10	Determine the Moment of Inertia of a Flywheel	CO 3
11	Verification of Law of Moment using Rotation Disc Apparatus and Bell Crank	CO 2
	Lever.	

Note: Students have to perform any 10 of the above Experiments

References:

- 1. S. Timoshenko, D. H. Young, J.V. Rao, S. Pati., Engineering Mechanics, 5th Edition, McGraw Hill Education.
- 2. Hibbeler R.C., Engineering Mechanics: Statics and Dynamics, 14th Edition, Pearson Education, Inc., New Delhi, 2022