PRASAD V POTLURI SIDDHATHA INSTITUTE OF TECHNOLOGY (AUTONOMUS)

INFORMATION TECHNOLOGY ADVANCED DATA STRUCTURES LAB

Course Code:	23IT3351	Year:	II	Semester:	I		
Course Category:	Professional Core Course	Branch:	IT	Course Type:	Practical		
Credits:	1.5	L-T-P:	0-0-3	Prerequisites:	Data Structures Through C / Object Oriented Programmin		
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100		

	COURSE OUTCOMES					
Upon su	Upon successful completion of the course, Student will be able to					
CO1	Implement programs as an individual on different IDEs/ online platforms.	L3				
CO2	Apply different design techniques for solving problems.	L3				
CO3	Develop an effective report based on various programs implemented.	L3				
CO4	Apply technical knowledge for a given problem and express with an effective oral communication.	L3				
CO5	Analyze outputs using given constraints/test cases.	L4				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:Substantial, 2: Moderate, 1:Slight)										S			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3											3	3	3
CO2	3											3	3	3
СОЗ	3								3	3		3	3	3
CO4		3								3		3	3	3
CO5		3										3	3	3

Unit No.	SYLLABUS CONTENTS	Mapped CO
1	Implement AVL Trees and its operations.	CO1, CO2, CO3, CO4, CO5
2	Implement B- Trees and its operations.	CO1, CO2, CO3, CO4, CO5
3	Implement Binary Heap and its operations.	CO1, CO2, CO3, CO4, CO5
4	Implement Graph and its operations.	CO1, CO2, CO3, CO4, CO5
5	Develop and implement an algorithm using Divide and Conquer strategy for a given set of problems.	CO1, CO2, CO3, CO4, CO5
6	Make use of Greedy method to implement a solution for a given problem.	CO1, CO2, CO3, CO4, CO5
7	Develop and implement an efficient solution using Dynamic Programming.	CO1, CO2, CO3, CO4, CO5
8	Use Backtracking design technique to implement a solution for a given problem.	CO1, CO2, CO3, CO4, CO5
9	Develop and implement an algorithm using Branch and Bound technique for solving a given problem.	CO1, CO2, CO3, CO4, CO5
10	Case Study-1: Apply the most appropriate design technique to develop and implement an efficient solution for a given problem.	CO1, CO2, CO3, CO4, CO5
11	Case Study-2: Develop and implement an optimal solution for a given problem by applying a suitable design technique.	CO1, CO2, CO3, CO4, CO5

Learning Resources

Text Books

- 1. Fundamentals of Data Structures in C++, Horowitz, Ellis; Sahni, Sartaj; Mehta, Dinesh, 2^{nd} Edition Universities Press
- 2. Computer Algorithms in C++, Ellis Horowitz, SartajSahni, Sanguthevar Rajasekaran, 2nd Edition University Press

References Text Book

- 1. Introduction to the Design & Analysis of Algorithms, Anany Levitin, Third Edition, 2011, Pearson Education.
- 2. Data Structures and Algorithm Analysis in C, Mark Allen Weiss, 2002, Pearson. 3. Algorithm Design Techniques, Narasimha Karumanchi, CareerMonk Publications, 2018.

e-Resources and other Digital Material

- 1. https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
- 2. http://littlesvr.ca/dsa-html5-animations/sorting.php
- 3. https://www.youtube.com/watch?v=AfYqN3fGapc
- 4. https://www.voutube.com/@takeUforward