Course Code	23BS1201	Year I Ser		Semester	II	
Course Category	Basic Science	Branch	ranch IT Course Type		Theory	
Credits	3	L-T-P	3-0-0	Pre- requisites	NIL	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (Common to all branches)

Course Outcomes					
Upon s	Upon successful completion of the course, the student will be able to				
CO1	Interpret the basic concepts of differential equations and vector calculus (L2).				
CO2	Apply different methods to solve ordinary differential equations and partial differential equations, L-C-R Circuit problems (L3).				
CO3	Apply the differential operator to calculate the divergence and flux of vector point functions (L3).				
CO4	Analyze the given ordinary differential equation and partial differential equation to find the solution (L4).				
C05	Analyze the given data to find work done, flux using line and surface integrals, areas and volumes using vector integral theorems (L4).				

Co	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of													
	correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3													
CO4		3							1	1				
CO5		3							1	1				

	SYLLABUS				
Unit No.	Contents	Mapped CO			
Ι	Differential equations of first order and first degree Linear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Newton's Law of cooling – Law of natural growth and decay.	CO1, CO2, CO4			
II	Linear differential equations of higher order(Constant Coefficients) Definitions, complementary function, general solution, particular integral, Wronskian, Method of variation of parameters. Applications to L-C-R Circuit problems.	CO1, CO2, CO4			
III	Partial Differential Equations Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.	CO1, CO2, CO4			
IV	Vector differentiation Scalar and vector point functions, vector operator Del, Del applies to scalar point functions- Gradient, Directional derivative, del applied to vector point functions- Divergence and Curl.	CO1, CO3, CO5			
V	Vector integration Line integral-circulation-work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and related problems.	CO1, CO3, CO5			

Learning
Resources
Text Books:
1. Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers, 2017, 44 th edition.
2.Advanced Engineering Mathematics, Erwin Kreyszig, JohnWiley&Sons, 2018, 10 th Edition
Reference Books:
1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14 th Edition.
2. Advanced Engineering Mathematics, Dennis G. Zill and Warren S. Wright, Jones and Bartlett, 2018.
3. Advanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018, 5th Edition.
4. Advanced Engineering Mathematics, R.K.Jain and S.R.K.Iyengar, Alpha
Science International Ltd., 2021 5 th Edition (9 th reprint).
5. Higher Engineering Mathematics, B.V. Ramana, Mc Graw Hill Education, 2017

E-Resources:

1.<u>https://nptel.ac.in/courses/111/105/111105121/</u> 2.<u>https://nptel.ac.in/courses/111/105/111105122/</u> **3.**<u>https://nptel.ac.in/courses/111/107/111107108/</u>