LINEAR ALGEBRA & CALCULUS (Common to all branches)

Course Code	23BS1101	101 Year I		Semester	Ι	
Course	Basic Science	Branch	IT	Course Type	Theory	
Category					-	
Credits	3	L-T-P	3-0-0	Prerequisites	NIL	
Continuous		Semester		Total Marks:		
Internal	30	End	70		100	
Evaluation:		Evaluation:				

Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to					
CO1	Interpret the basic concepts of Linear algebra and Calculus.(L2)					
CO2	Apply the echelon form to obtain the solution of system of linear equations and eigen vectors of a matrix.(L3)					
CO3	Apply the concepts of calculus to find the series expansion and extremum of a given function, area enclosed by plane curves and volume of the solids.(L3)					
CO4	Analyze the solution set of linear system of equations and nature of the quadratic forms. (L4)					
CO5	Analyze the behavior of functions using mean value theorems, extremum of the given function and limits of integration for functions of several variables.(L4)					

	Contribution of Course Outcomes towards achievement of Program Outcomes& Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3													
CO4		3							1	1				
C05		3							1	1				

	SYLLABUS					
Unit No.	Contents					
Ι	Matrices Rank of a matrix by echelon form, normal form. Cauchy–Binet formulae (without proof).Inverse of Non- singular matrices by Gauss-Jordan method, System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Jacobi and Gauss Seidel Iteration Methods.	CO1, CO2, CO4				
Π	Eigen values, Eigen vectors and Orthogonal Transformation Eigen values, Eigen vectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem(without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms,Reduction of Quadratic form to canonical forms by Orthogonal Transformation.	CO1, CO2, CO4				
III	Calculus Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem with their geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof), Problems and applications on the above theorems.	CO1, CO3, CO5				
IV	Partial differentiation and Applications (Multivariable calculus) Functions of several variables: Continuity and Differentiability, Partial derivatives, total derivatives, chain rule, Taylor's and Maclaurin's series expansion of functions of two variables. Jacobians, Functional dependence, maxima and minima of functions of two variables, method of Lagrange multipliers.	CO1, CO3, CO5				
V	Multiple Integrals (Multi variable Calculus) Double integrals, triple integrals, change of order of integration, change of variables to polar, cylindrical and spherical coordinates. Finding areas (by double integrals) and volumes (by double integrals and triple integrals).	CO1, CO3, CO5				

Learning Resources

Text Books:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers, 2017, 44th Edition
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 2018,10 th Edition.

Reference Books:

- 1. Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition
- 2. Advanced Engineering Mathematics, R.K.Jain and S. R.K.Iyengar, Alpha Science International Ltd., 2021 5th Edition (9threprint).
- 3. Advanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018, 5th Edition.
- 4. Advanced Engineering Mathematics, Micheael Greenberg, Pearson publishers, 9th edition
- 5. Higher Engineering Mathematics, H.K Das, Er.Rajnish Verma, S.Chand

Publications, 2014, Third Edition (Reprint2021).

E-Resources:

- 1. https://nptel.ac.in/courses/111/108/111108157/
- 2. https://youtu.be/xDSejIvZmg4
- 3. https://nptel.ac.in/courses/111104125