INDUCTION AND SYNCHRONOUS MACHINES

Course Code	23EE3402	Year	II	Semester(s)	Π	
Course Category	Professional Core	Branch	EEE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	1.Basic Electrical and Electronics Engineering 2.Electrical Machines-I	
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Understand the basic concepts of three phase induction motors, single phase motors and synchronous machines. (L2)					
CO2	Apply the basic knowledge to obtain the desired parameters and performance characteristics of three phase induction motors and single phase motors. (L3)					
CO3	Apply the basic knowledge to obtain the desired parameters and performance characteristics of synchronous machines. (L3)					
CO4	Analyze the concepts of torque equation, testing techniques and speed control methods of three phase induction motor and single phase motors. (L4)					
CO5	Analyze the mathematical concepts of voltage regulation finding methods and parallel operation of synchronous machines(L4)					
CO6	Capability to understand the concepts of three phase induction motors, single phase motors and synchronous machines and submit a report.					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3												2	1
CO4		3											2	1
CO5		3											2	1
C06									3	3			2	1

SYLLABUS						
Unit	Contents	Mapped				
No.		СО				
Ι	3-phase induction motors:	CO1				
	Construction of Squirrel cage and Slipring induction motors- production of	CO2				
	rotating magnetic field - principle of operation - rotor emf and rotor	CO4				
	frequency – rotor current and power factor at standstill and during running	CO6				

	conditions- rotor power input, rotor copper loss and mechanical power developed and their inter-relationship -equivalent circuit - phasor diagram	
П	Performance of 3-Phase induction motors: Torque equation – expressions for maximum torque and starting torque – torque-slip characteristics – double cage and deep bar rotors – Brake test, No load and Blocked rotor tests – circle diagram for predetermination of performance- methods of starting –starting current and torque calculations - speed control of induction motor with V/f control method, rotor resistance control and rotor emf injection technique –crawling and cogging – induction generator operation.	CO1 CO2 CO4 CO6
III	Single Phase Motors: Single phase induction motors – constructional features – double revolving field theory, Cross field theory – equivalent circuit- split phase motor, capacitor start motor, capacitor start capacitor run motor & shaded pole motor, AC series motor.	CO1 CO2 CO4 CO6
IV	Synchronous Generator: Constructional features of non-salient and salient pole type alternators- armature windings – distributed and concentrated windings – distribution& pitch factors – E.M.F equation –armature reaction – voltage regulation by synchronous impedance method – MMF method and Potier triangle method –two reaction analysis of salient pole machines -methods of synchronization- Slip test – Parallel operation of alternators.	CO1 CO3 CO5 CO6
V	Synchronous Motor: Synchronous motor principle and theory of operation – Effect of excitation on current and power factor– synchronous condenser –expression for power developed –hunting and its suppression – methods of starting.	CO1 CO3 CO5 CO6

Learning Resources

Text Books

1. Dr. P. S Bimbhra, Electrical Machinery,7/e -Khanna Publishers,2018

2. I.J. Nagarath and D.P. Kothari, Electric Machines, 4/e, McGraw Hill, 2010.

Reference Books

1. J.B.Gupta, Electrical Machines, S.K.Kataria & Sons publications.

- 2. M.G.Say, The Performance and Design of A.C.Machines, ELBS and Pitman & Sons.
- 3. Abhijit Chakrabarti and Sudipta Debnath, Electrical Machines, 1/e, Mc Graw Hill, 2015.

E- Resources

https://nptel.ac.in/courses/108/105/108105131