ELECTROMAGNETIC FIELD THEORY

Course Code	23ES1301	Year	II	Semester(s)	Ι
Course Category	Engineering Science	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Differential Equations & Vector Calculus
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Compute electric fields and potentials using basic laws and solve Laplace's or						
	Poisson's equations for various electric charge distributions. (L3)						
CO2	Analyse the behaviour of conductors in electric fields, electric dipole, the capacitance						
	and energy stored in dielectrics. (L4)						
CO3	Calculate the magnetic field intensity due to current carrying conductor and						
	understanding the application of Ampere's law, Maxwell's second and third law. (L3)						
CO4	Estimate self and mutual inductances and the energy stored in the magnetic field. (L4)						
CO5	Analyse the concepts of Faraday's laws, Displacement current, Poynting						
	theorem and Poynting vector. (L4)						
CO6	Able to write up findings in the areas of electrostatics, magnetostatics, and time-varying						
	fields.						

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)									&				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												2	
CO2		3											2	
CO3	3												2	
CO4		3											2	
CO5		3											2	
CO6									3	3				

	SYLLABUS				
Unit	Contents	Mapped			
No.		CO			
Ι	Electrostatics-I:	CO1,CO6			
	Coulomb's law and Electric field intensity (EFI) - EFI due to Continuous				
	charge distributions (line charges - infinite line charge & Circular Ring,				
	surface charges - infinite sheet of charge & Circular Disk), Electric flux				
	density, Gauss's law (Maxwell's first equation, $\nabla . \vec{D} = \rho_v$), Applications of				
	Gauss's law - infinite line charge, infinite sheet of charge, coaxial cable,				
	spherical shell of charge and uniformly charged sphere,				

II	Electrostatics-II:	CO1,CO2,
	Electric Potential, Work done in moving a point charge in an electrostatic	CO6
	field (second Maxwell's equation for static electric fields, $\nabla \times \vec{E} = 0$), Potential gradient, Energy stored and density in a static electric field, Laplace's and Poison's equations, Electric dipole and dipole moment – Potential and EFI due to an electric dipole, Torque on an Electric dipole	
	placed in an electric field, Current density-conduction and convection current densities, Ohm's law in point form, Continuity equation of current equation, Behaviour of conductors in an electric field, Polarization.	
III	Boundary Conditions and Capacitance:	СО2,
	Boundary conditions between conductor to dielectric, dielectric to dielectric	CO3,CO6
	and conductor to free space, Capacitance of parallel plate capacitor and	
	parallel plate capacitor with composite dielectrics.	
	Magnetostatic Fields:	
	Biot - Savart's law and its applications viz. Straight current carrying	
	filament, circular, square, and solenoid current carrying wire - Magnetic	
	flux density and Maxwell's second Equation (∇ . $\vec{B} = 0$), Ampere's circuital	
	law and its applications viz. MFI due to an infinite sheet, long filament	
	current carrying conductor, point form of Ampere's circuital law, Maxwell's	
	third equation $(\nabla \times \vec{H} = \vec{J})$.	
IV	Magnetic Force in magnetic fields:	СОЗ,
	Magnetic force, moving charges in a magnetic field – Lorentz force equation, force on a current element in a magnetic field, force on a straight and a long current carrying conductor in a magnetic field, force between two straight long and parallel current carrying conductors, Magnetic dipole, Magnetic torque.	CO4,CO6
	Self and mutual inductance:	
	Self and mutual inductance – determination of self-inductance of a solenoid, toroid, coaxial cable and mutual inductance between a straight long wire and a square loop wire in the same plane – Energy stored and energy density in a magnetic field.	
V	magnetic field. Time Varying Fields:	CO5,CO6
v	Faraday's laws of electromagnetic induction, Maxwell's fourth equation	
	$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$, integral and point forms of Maxwell's equations, statically and dynamically induced EMF, Displacement current, Modification of Maxwell's equations for time varying fields, Poynting theorem and Poynting vector.	

Learning Resources						
Text Books						
 Matthew N O Sadiku, "Elen 7th edition, 2018. 	ements of Electromagnetics" Oxford Publication					
 William H. Hayt & John A. Bu 7th Editon.2006. 	uck, "Engineering Electromagnetics", Mc. Graw-Hil					

Reference Books

- 1. D J Griffiths, "Introduction to Electro Dynamics", Prentice-Hall of India Pvt. Ltd, 2nd edition.
- 2. Yaduvir Singh, "Electromagnetic Field Theory", Pearson India, 1st edition, 2011.
- 3. Sunil Bhooshan, "Fundamentals of Engineering Electromagnetics", Oxford University Press, 2012.
- 4. Joseph A. Edminister, MahamoodNavi, "Schaum's Outline of Electromagnetics" 4th Edition,2014.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/117103065
- 2. <u>Electromagnetic Theory Course (nptel.ac.in)</u>