DC MACHINES & TRANSFORMERS

Course Code	23EE3302	Year	II	Semester(s)	Ι
Course Category	Professional Core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Basic Electrical and Electronics Engineering
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to					
CO1	Understand the basic concepts of construction and operation of DC machines, single phase transformer, auto transformer and three phase transformers. (L2)					
CO2	Apply the basic knowledge to obtain the desired parameters/performance characteristics of DC machines. (L3)					
CO3	Apply the basic knowledge to obtain the desired parameters/performance characteristics of single phase transformer, auto transformer and three phase transformer. (L3)					
CO4	Analyze the performance characteristics, speed control methods and testing techniques of DC machines. (L4)					
CO5	Analyze the different configurations and testing techniques of single phase transformer, auto transformer and three phase transformer. (L4)					
CO6	Capability to understand the concepts of DC machines, single phase transformer, auto					
	transformer and three phase transformer and submit a report.					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)										&			
	PO1	PO2	PO3	PO4	PO5		PO7			PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	1
CO3	3												2	1
CO4		3											2	1
CO5		3											2	1
CO6									3	3			2	1

SYLLABUS					
Unit	Contents	Mapped			
No.		СО			
Ι	DC Generators:	CO1			
	Construction and principle of operation of DC machines – EMF equation for	CO2			
	generator – Excitation techniques – characteristics of DC generators –	CO4			
	applications of DC Generators, Back-emf and torque equations of DC motor	CO6			
	– Armature reaction and commutation				

	Π	Starting, Speed Control and Testing of DC Machines	CO1						
		Characteristics of DC motors – losses and efficiency – applications of DC	CO2						
		motors. Necessity of a starter – starting by 3-point and 4-point starters –	CO4						
		speed control by armature voltage and field current control – testing of DC							
		machines – brake test, Swinburne's test –Hopkinson's test–Field Test.							
	III	Single-phase Transformers	CO1						
		Introduction to single-phase Transformers (Construction and principle of	CO3						
		operation)-emf equation - operation on no-load and on load -lagging,	CO5						
		leading and unity power factors loads –phasor diagrams– equivalent circuit –							
		regulation - losses and efficiency - effect of variation of frequency and							
		supply voltage on losses – all day efficiency.							
Ī	IV	Testing of Transformers	CO1						
		Open Circuit and Short Circuit tests - Sumpner's test - separation of losses-	CO3						
		Parallel operation with equal and unequal voltage ratios- auto transformer -	CO5						
		equivalent circuit – comparison with two winding transformers.	CO6						
I	V	Three-Phase Transformers:	CO1						
		Polyphase connections- Y/Y, Y/ Δ , Δ /Y, Δ / Δ , open Δ and Vector groups –	CO3						
		third harmonics in phase voltages- Parallel operation-three winding	CO5						
		transformers – off load and on load tap changers–Scott connection.							

Learning Resources

Text Books

- 1. Dr.P. S Bimbhra, Electrical Machinery, 7/e, Khanna Publishers, 2018.
- 2. I.J. Nagarath and D.P. Kothari, Electric Machines, 4/e, McGraw Hill, 2010.

Reference Books

- **1.** J.B. Gupta, Theory and performance of Electrical Machines, S.K.Kataria & Sons Publishers, 2015.
- 2. A.E. Clayton and N N Hancock, Performance and Design of DC Machines, Oxford, 1987.
- **3.** Abhijit Chakrabarti and Sudipta Debnath, Electrical Machines, 1/e, Mc Graw Hill, 2015.
- 4. S.J. Chapman, Electric Machine Fundamentals, 5/e, McGraw Hill, 2011.

e- Resources

https://nptel.ac.in/courses/108/105/108105155/