NUMERICAL METHODS & COMPLEX VARIABLES

Course		23BS1302	Year	II	Semester	_		
Code						I		
Course Category		Basic Sciences course	Branch	EEE	Course Type	Theory		
Cred	lits	3	L-T-P	3-0-0	Prerequisites	Nil		
Conti	nuous		Semester		Total			
Inter	nal	30	End	70	20002	100		
Evalua	ation:	30	Evaluation:	Marks:		100		
Course Outcomes								
Afte	er succe	essful completion of	the course, the	student will b	e able to			
CO1	CO1 Understand the basic concepts of Numerical Methods and complex variables.(L2)							
	Apply different Numerical methods to solve the problems of numerical differentiation, integration, ordinary differential equations.(L3)							
CO3	Construct an analytic function and complex power series. (L3)							
CO4	Estimate the interpolated values, approximate roots, areas and derivatives. (L4)							
CO5	Analyse the region to evaluate integrals. (L4)							

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO 9	PO10	PO1 1	PO12	PSO1	PSO2
CO1	2												1	
CO ₂	3												1	
CO3	3												1	
CO4		3							1	1			1	
CO5		3							1	1			1	

UNIT	Contents	Mapped COs
No.		
I	Solution to Algebraic and Transcendental Equations Solution of algebraic and transcendental equations: Bisection method, method of false position and Newton-Raphson's method. Finite differences, relation between operators, interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formula. (All theorems/properties without proofs)	CO1,CO2, CO4
П	Numerical Differentiation and Integration Numerical Differentiation- Newton's forward and backward difference formulae. Numerical integration- trapezoidal rule, Simpson's $\frac{1}{3}^{rd}$ and $\frac{3^{th}}{8}$ rules. Ordinary differential equations: Euler's, modified Euler's, Runge-Kutta method of fourth order for solving first order equations. (All theorems/properties without proofs)	CO1,CO2, CO4

	Functions of a complex variable:	CO1,CO3,CO5
	Differentiability – Analyticity – Properties – Cauchy-Riemann	
III	equations in Cartesian and polar coordinates. Harmonic and	
	conjugate harmonic functions –Milne- Thompson's method.	
	(All theorems/properties without proofs)	
	Complex Integration:	CO1,CO3,CO5
IV	Line integral – Evaluation along a path– Cauchy's integral theorem –	
	Cauchy's integral formula – Generalized integral formula. Complex	
	power series: Radius of convergence – Expansion in Taylor's series,	
	Maclaurin's series and Laurent series.	
	(All theorems/properties without proofs)	
	Singular points – Isolated singular point – pole of order n – essential	CO1,CO3,CO5
	singularity.	
V	Residue – Evaluation of residues - Residue theorem - Evaluation of	
	integrals of the form $\int_0^{2\pi} f(\cos \theta, \sin \theta) d\theta$ and $\int_{-\infty}^{\infty} f(x) dx$ (All	
	theorems/properties without proofs)	

Learning Resourse(s)

Text Book(s)

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Introductory methods of Numerical Analysis by S.S. Sastry, 5th edition, PHI publications, 2010
- 3. Complex Variables by A.K. Kapoor

Reference Book(s)

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.
- 2. Engineering Mathematics (Volume III) S. Chand T. K. V. Iyengar, B. Krishna Gandhi, S. Ranganatham, M.V.S.S.N. Prasad- 9th Revised Edition: 2012.

e- Resources & other digital material

- 1. https://www.nptel.ac.in/courses/111/107/111107105/
- 2. https://www.nptel.ac.in/courses/111/105/111105134/
- 3. https://nptel.ac.in/courses/111/106/111106141/
- 4. FED Moodle