CHEMISTRY (Common to CSE, ECE, EEE)

Course Code	23BS1102	Year	I	Semester	I
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes							
Upon su	Upon successful completion of the course, the student will be able to						
CO1	1 Interpret fundamental concepts of chemistry.(L2)						
CO2	Apply knowledge of quantum mechanics, materials and energy sources to describe and solve problems.(L3)						
CO3	Utilize knowledge of conducting polymers and instrumentation to design and develop new materials.(L3)						
CO4	Analyze bonding models, Modern engineering materials, and electrochemical processes to make informed decisions. (L4)						
CO5	Analyze the applications of polymers and instrumentation methods. (L4)						

Cont	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High,2: Medium, 1: Low)										th of		
	PO1	PO2	PO3							PO10	PO12	PSO1	PSO2
CO1	2												
CO2	3												1
CO3	3												
CO4		3							1	1			1
CO5		3							1	1			

	SYLLABUS					
Unit Contents						
No.		CO				
	UNIT I Structure and Bonding Models:	CO1,CO2				
I	Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance of Ψ and Ψ 2, particle in one dimensional box, molecular orbital theory – bonding in homo-and hetero nuclear diatomic molecules – energy	CO4				
	level diagrams of O2 and CO etc. π -molecular orbitals of butadiene and					
	benzene-calculation of bond order.					
II	UNIT II Modern Engineering materials	CO1,CO2				
	Semiconductors- Introduction, basic concept, applications.	CO4				

		ı		
	Super conductors-Introduction ,basic concept, applications.			
	Super capacitors- Introduction, Basic Concept, Classification and			
	Applications. Nano materials-Introduction, classification, properties and			
	applications of Fullerenes, carbon Nano tubes, Graphines and nanoparticles.			
	UNIT III Electrochemistry and Applications			
	Electrochemical cell, Nernst equation, cell potential calculations and numerical			
	problems. potentiometry- potentiometric titrations (redox titrations), concept of			
	conductivity, conductivity cell, conduct metric titrations (acid-base titrations).			
III	Electrochemical sensors – potentiometric sensors with examples, amperometric	CO1,CO2		
	sensors with examples. Primary cells – Zinc-air battery, Secondary cells –	CO4		
	lithium- ion batteries- working of the batteries including cell reactions.			
	Fuel cells- hydrogen-oxygen fuel cell- working of the cells. Polymer			
	Electrolyte Membrane Fuel cells (PEMFC).			
	UNIT IV Polymer Chemistry			
	Introduction to polymers, functionality of monomers, chain growth and step			
	growth polymerization, coordination polymerization with specific examples			
	and mechanisms of polymer formation			
IV	Plastics -Thermo and Thermosetting plastics, Preparation, properties and			
1 4	applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.	CO1,CO3		
	Elastomers–Buna-S,Buna-N–preparation, properties and applications	CO5		
	Conducting polymers – poly acetylene, poly aniline, – mechanism of			
	conduction and applications. Bio-Degradable polymers - Poly Glycolic Acid			
	(PGA), Polyl Lactic Acid (PLA).			
	UNIT V Instrumental Methods and Applications			
	Electromagnetic spectrum- Absorption of radiation- Beer-Lambert's law. UV-			
V	Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies,	CO1,CO3,		
	fundamental modes and selection rules, Instrumentation. Chromatography-	CO5		
	Basic Principle, Classification. HPLC: Principle, Instrumentation and			
	Applications.			

Learning Resources

Text Books:

- 1. Jain and Jain, Engineering Chemistry, 16/e, Dhanpat Rai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 0/e, Oxford University Press, 2010.

Reference Books:

- 1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
- 2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb. 2008
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

E-Resources:

https://nptel.ac.in/courses/103108100

https://onlinecourses.nptel.ac.in/noc23 cy19/preview

https://nptel.ac.in/courses/118104008