Course Code	23ES1402	Year	II	Semester	II
Course Category	ES	Offering Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

Linear Control Systems

Course Outcomes				
Upon successful completion of the course, the student will be able to	BL			
CO1 Classify control systems and determine the stability of a system using variou models	L2			
CO2 Apply standard test signals to a system to determine their characteristics	L3			
CO3 Make use of stability concepts to obtain the desired characteristics	L3			
CO4 Inspect the characteristics of a linear control system using various time an frequency domain tools	d L4			
CO5 Examine the system behaviour using various stability analysis techniques	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (H: High (3), M: Medium (2), L:Low (1))														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2							2		2			2	
CO2	1							2		2			2	
CO3	3							2		2			2	
CO4		2						3		3			3	
CO5		2						3		3			3	
Average	2	2						2		2			2	

	Syllabus						
Unit No.	Content						
1	Introduction: Concepts of System, Control Systems: Open Loop and closed loop control systems and their differences. Different examples of control systems, Feed-Back Characteristics, Effects of feedback. Mathematical models: Differential equations, transfer functions. Translational and Rotational mechanical systems.	CO1 CO3					
2	 Transfer Function Representation: Block diagram representation of systems –Block diagram algebra–Representation by Signal flow graph-Reduction using mason's gain formula. Time Response Analysis: Standard test signals – Time response of first order systems – Characteristic Equation of Feedback control systems, Transient response of second order systems – Time domain specifications – Steady state response - Steady state errors and error constants. 	CO1-CO4					

3	Stability Analysis in S-Domain: The concept of stability – Routh's stability criterion – qualitative stability and conditional stability – limitations of Routh's stability. Root Locus Technique: The root locus concept - construction of root locieffects of adding poles and zeros to G(s) H(s) on the root loci.	CO1, CO3,CO4,
4	Frequency response analysis: Introduction, Correlation between time and frequency response, Polar Plots, Bode Plots, Nyquist Stability Criterion.	CO1, CO3, CO4,CO5
5	State variable analysis: State, State variables, State variable representation, State variable form from Transfer function (Diagonal form), transfer function from State variable form, State transition matrix, properties of state transition matrix, Controllability and Observability	

Learning Recourse(s)

Text Books I. J.Nagrath and M.Gopal, Control Systems Engineering, New Age International (P) Limited, Publishers, 7th Ed., 2022.

Reference Books

- Ogata, Modern Control Engineering, 2nd Ed.,, Prentice Hall of India.,2011
 R.C. Sukla, Control Systems, 3rd Ed., Dhanpatrai and Sons,1998
- 3. Nise, Control Systems Engg., John wiley, 3rd Ed., 2000

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/108/106/108106098/
- 2. https://freevideolectures.com/course/2337/control-engineering