Course Code	23 EC3401	Year	II	Semester	II	
Course Category	BS	Branch	ECE	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Pre requisites	Engineering Physics, Differential Equations and Vector Calculus	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

Electromagnetic Waves & Transmission Lines

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the basic mathematical concepts related to electromagnetic	L2			
	fields, transmission lines, uniform plane waves, and its boundaries.				
CO2	Apply the Electrostatic and Magneto static Fields to various applications	L3			
CO3	Apply Maxwell's equations for static and time-varying fields to solve vector	L3			
	wave equations, power and polarization for waves propagation.				
CO4	Analyze the parameters and characteristics of transmission lines	L4			

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of Correlations (3:High, 2:Medium, 1:Low)														
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2		2		
CO2	3									2		2	3	
CO3	3				3					2		2	3	
CO4	2				2					2		2	2	
Avg.	3				3					2		2	3	

Syllabus					
Unit No.	Contents	Mapped CO			
1	Transmission Lines: Introduction, types, Primary & Secondary Constants, Transmission Line Equation, Characteristic Impedance, Propagation Constant, Lossless line, Distortion less line Input Impedance, Reflection Coefficient, VSWR.				
2	Review of coordinate systems; Electrostatics: Coulomb's Law, Electric Field Intensity, Field due to a line charge, Electric Flux Density, Guass's law, Electric Potential, Potential gradient, energy stored, Laplace's and Poison's equations. Continuity Equation and Relaxation Time.	CO1, CO3			
3	Magnetostatics: Steady current, Biot-Savart's law, Static magnetic field due to line current, Magnetic flux Density, Ampere's circuital law, Lorentz force equation, Magnetic Vector Potential, energy stored.	CO1,CO3			

	Time-varying Fields and Maxwell's Equations: Time varying fields,	
4	Faraday's law of electromagnetic induction, Displacement current,	01 CO4
	Faraday's law of electromagnetic induction, Displacement current, Maxwell's equations in point form and integral form, boundary	01, 004
	conditions of electromagnetic fields, Polarization, Magnetization.	
	Uniform Plane Wave: Wave equation, Wave propagation in free	
	space, wave propagation in conductor and dielectrics, PoyntingCo	01,CO4
	Theorem, skin effect, wave polarization.	

Learning Resources

Text Books

 Matthew N.O. Sadiku, Elements of Electromagnetics, Oxford University Press, 7th Ed., 2018.

2. William H. Hayt, Engineering Electromagnetics, Tata Mc-Graw Hill Publications, 6th Ed.,

3. Nathan Ida, Engineering Electromagnetics, Springer Publications, 4th Ed., 2021

Reference Books

1. R Shevgaonkar, Electromagnetic Waves, Tata Mc-Graw Hill Publications

2. E. C. Jordan, EM Waves and Radiating Systems, PHI, 2nd Ed., 2007

e- Resources & other digital material

1. <u>https://ocw.mit.edu/courses/res-6-001-electromagnetic-fields-and-energy-___spring-2008/</u> 2. <u>https://nptel.ac.in/courses/117/103/117103065/</u>