Engineering Physics Lab							
Course Code	23BS1252	Year	Ι	Semester	II		
Course Category	Basic Science	Branch	ECE	Course Type	Lab		
Credits	1	L-T-P	0-0-2	Prerequisites	Nil		
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100		

Course Outcomes						
Upon s	Upon successful completion of the course, the student will be able to					
	Identify the type of semiconductor using Hall effect and measure the thermal					
CO1	resistivity, energy band gap L3.					
1 (1)	Apply resonance to estimate the frequency of a tuning fork and verify laws of a					
	stretched string L3.					
CO3	Examine the optical, elastic, and dielectric properties of the given materials. L4					
	Assess the intensity of the magnetic field of circular coil carrying current with					
	distance and measure resistance using four probe method. L4					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													1
CO2	3													1
CO3		3												1
CO4		3												1

Exp.no	Contents				
1	Determination of dielectric constant of the various solid samples				
2	Determination of wavelength of Laser light using diffraction grating.	CO-3			
3	Determination of the resistivity of semiconductors by four probe methods	CO-4			
4	Determination of energy gap of a semiconductor using p-n junction diode	CO-1			
5	Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method	CO-4			
6	Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall effect	CO-1			
7	Determination of temperature coefficients of a thermistor.	CO-1			
8	Determination of rigidity modulus of the material of the given wire using Torsional pendulum	CO-3			

9	To verify the laws of transverse vibrations of a string using Sonometer.	CO-2
10	Determination of Frequency of electrically maintained tuning fork by Melde's experiment	CO-2

Learning Resources

References:

• S.Balasubramanian, M.N.Srinivasan, S.ChandPublishers, 2017A Textbook of Practical Physics

Web Resources

- www.vlab.co.in
- https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype