Course Code	23CE3352	Year II Semeste r		Ι	
Course Category	Professional Core	Branch	CIVIL	Course Type	Practical
Credits	1.5	L-T-P	0-0-3	Prerequis ites	Engineering Mechanics
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

23CE3352-STRENGTH OF MATERIALS LAB

Course objectives: By the end of this course student will be able to

1 To determine the tensile strength and yield parameters of mild steel

2 To find out flexural strengths of Steel/Wood specimens and measure deflections

3 To determine the torsion parameters of mild steel bar

4 To determine the hardness numbers, impact and shear strengths of metals

5 To determine the load-deflection parameters for springs

6 To determine the tensile strength and yield parameters of mild steel

Course Outcomes														
Upon successful completion of the course, the student will be able to:														
CO 1	Conduct tensile strength test and draw stress-strain diagrams for ductile metals									K3				
CO2	Perform bending test and determine load-deflection curve of steel/wood								K2					
соз	Able to conduct torsion test and determine torsion parameters								K3					
CO4	Perform hardness, impact and shear strength tests and calculate hardness numbers, impact and shear strengths								K3					
C05	5 Able to conduct tests on closely coiled and open coiled springs and calculate deflections							K3						
Contribution of Course Outcomes towards achievement of Program Outcomes								es						
	PO1	PO	PO3	PO	PO	PO	PO	PO8	PO	PO	PO	PO	PS	PS
		2		4	5	6	7		9	10	11	12	01	02
CO1	3	3	3	3	3	2	2		2				3	2
CO2	3	3	3	3	3	2	2		2				3	2
CO3	3	3	3	3	3	2	2		2				3	2
CO4	3	3	3	3	3	2	2		2				3	2
CO5	3	3	3	3	3	2	2		2				3	2
Avg.	3	3	3	3	3	2	2		2				3	2
1- Low					2-Medium 3-High									

Course Content				
Experiment No.1	Tension test.			
Experiment No.2	Bending test on (Steel/Wood) Cantilever beam.			
Experiment No.3	Bending test on simply supported beam			
Experiment No.4	Torsion test.			
Experiment No.5	Hardness test.	CO1		
Experiment No.6	Compression test on Open coiled springs	CO2 CO3		
Experiment No.7	Tension test on Closely coiled springs	CO4		
Experiment No.8	Compression test on wood/ concrete	CO5		
Experiment No.9	Izod / Charpy Impact test on metals			
Experiment No.10	Shear test on metals			
Experiment No.11	Use of electrical resistance strain gauges.			
Experiment No.12	Modulus of rigidity by conducting compression test on springs			

Learning Resources

	0			
	 Mechanics of Soids Lab Manual by Dept. of CE, PVPSIT 			
	2. IS 1608 (2005): Mechanical testing of metals - Tensile			
Text Books	Testing [MTD 3: Mechanical Testing of Metals]			
	3. IS 1500 (2005): Method for Brinell Hardness Test for			
	Metallic Materials [MTD 3: Mechanical Testing of			
	Metals]			
	4. IS 1501: Method For Vickers Hardness Test for			
	Metallic Materials			
	5. BIS IS 1598: 1977(R2015): method for izod impact			
	6. BIS IS 1757: 1988(R2009): Method for Charpy impact			
	test (v-notch) for metallic material			
	7. IS 1717: Metallic Materials - Wire - Simple Torsion			
	8 4 S Timoshenko Strength of Materials. Elementary			
	Theory and Problems- Vol.I, 2004.			
Reference Books	1. R. Subrahmanian, Strength of Materials, 3/e, Oxford			
	University Press, 2016.			
e-Resources&	1. sm-nitk.vlabs.ac.in			
other digital	http://jntuk-coeerd.in/			
material				