23CE3302: STRENGTH OF MATERIALS

(SYLLABUS)

Course Code	23CE3302	Year	II	Semester	Ι
Course Category	Professional Core	Branch	CIVIL	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Engineering Mechanics, Differentiation & Integration
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

After su	accessful completion of the course, the student will be able to	Blooms Level
CO 1	To understand the basic materials behavior under the influence of different external loading conditions and the support conditions.	
CO 2	To draw the diagrams indicating the variation of the key performance features like axial forces, bending moment and shear forces in structural members.	L3
CO 3	To acquire knowledge of bending concepts and calculation of section modulus and for determination of stresses developed in the beams	L2
CO 4	To analyze the deflections due to various loading conditions.	L3
CO 5	To assess stresses across section of the thin, thick cylinders and columns to arrive at optimum sections to withstand the internal pressure using Lame's equation	t L4

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of Correlations (3-High, 2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	2	-	-	-	-	-	2	1	3	3	1
CO2	2	1	-	1	-	-	-	-	-	1	1	2	3	1
CO3	2	2	-	1	-	-	-	-	-	2	1	2	3	2
CO4	1	2	-	1	-	-	-	-	-	2	1	1	3	2
CO5	2	1	-	2	-	-	-	-	-	1	1	2	3	2

UNIT No.	Conte nts	Mappe d COs
Ι	Simple Stresses and Strains: Elasticity and plasticity — Types of stresses and strains — Hooke's law — Factor of safety, Poisson's ratio - Relationship between Elastic constants — Bars of varying section — stresses in composite bars.	
п	Shear Force and Bending Moment: Definition of beam — Types of beams — Concept of shear force and bending moment — Point of contra flexure — Relation between S.F., B.M and rate of loading at a section of a beam; S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads.	CO2
ш	Flexural and Shear Stresses: Flexural Stresses: Theory of simple bending — Assumptions — Derivation of bending equation, Neutral axis — Determination of bending stresses — section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections — Design of simple beams	

	Shear Stresses: Derivation of formula — Shear stress distribution across various beam				
	sections like rectangular, circular, I, T Angle sections.				
	Torsion – circular shafts only.				
	Deflection of Beams: Double integration and Macaulay's methods — Determination of				
IV	slope and deflection for cantilever, simply supported and overhanging beams subjected to				
	point loads, uniformly distributed loads, uniformly varying loads, partial uniformly	CO4			
	distributed loads, couple and combination of these loads. Mohr's theorems — Moment				
	area method — application to simple cases of cantilever.				
	Columns: Introduction - Classification of columns - Axially loaded compression				
	members – Euler's crippling load theory – Derivation of Euler's critical load formulae for				
	various end conditions – Equivalent length – Slenderness ratio – Euler's critical stress –				
	Limitations of Euler's theory - Rankine - Gordon formula - Eccentric loading and				
\mathbf{V}	Secant formula – Prof. Perry's formula.				
	Thin and Thick cylindrical shells — Derivation of formula for longitudinal and				
	circumferential stresses — hoop, longitudinal and volumetric strains — changes in				
	diameter, and volume of thin cylinders. Lames theory for thick cylinders, Derivation of				
	Lames formulae, distribution of hoop and radial stresses across the thickness, compound				
	cylinders-distribution of stresses				

Learning Resource(s)

- Text Book(s)
 - 1. Strength of Materials by R. K. Bansal, Lakshmi Publications, 16th Edition, 2022.
 - 2. Strength of Materials by B. S. Basavarajaiah and P. Mahadevappa, Universities Press 3rd Edition, 2010
 - 3. Strength of Materials by J.K. Gupta and S.K. Gupta, Cengage publications 2nd edition ,2024

Reference Book(s)

- 1. Advanced Mechanics of Solids, L.S Srinath, McGraw Hill Education, 2017, 3rd Edition
- 2. Strength of Materials Fundamentals and Applications, T.D.Gunneswara Rao and Mudimby Andal, Cambridge University Press, 2018, 1st Edition
- 3. Mechanics of Materials, Beer and Johnston, McGraw Hill India Pvt. Ltd., 2020, 8th Edition (SI Units).
- 4. Mechanics of Solids E P Popov, Prentice Hall, 2nd Edition, 2015.
- A Textbook of Strength of Materials, by R. K. Rajput, 7e (Mechanics of Solids) SI Units S. Chand & Co, NewDelhi 7th edition 2022.
- 6. Strength of Materials by S.S.Ratan Tata McGrill Publications 3rd Edition , 2016.

e- Resources & other digital material

- 1 https://nptel.ac.in/courses/105105108
- 2 https://nptel.ac.in/courses/112107146
- 3 https://nptel.ac.in/courses/105105166
- 4 CED Moodle