23BS1301: NUMERICAL & STATISTICAL METHODS SYLLABUS

Course Code	23BS1301	Year	II	Semester	I
Course Category	Basic Science course	Branch	Freshman Engineering /CE	Course Type	Theory
Credits	Credits 3 L-T-		3-0-0	- 101094151	Differentiation &
				tes	Integration
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100

	After successful completion of the course, the student will be able to
CO1	Interpret the basic concepts of Numerical and statistical Methods .(L2)
CO2	Apply different Numerical methods to solve the problems of numerical differentiation,
	integration, ordinary differential equations.(L3)
CO3	Apply concepts of probability and random variables to real life problems. (L3)
CO4	Estimate the interpolated values, approximate roots, areas and derivatives. (L4)
CO5	Analyze the data to test of hypothesis corresponding to mean, proportions for large and small samples. (L4)

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2												1	
CO2	3												1	
CO3	3												1	
CO4		3											1	
CO5		3											1	

UNIT	Conte	Mapped
No.	nts	COs
I	Solution to Algebraic and Transcendental Equations Solution of algebraic and transcendental equations: Bisection method, method of false position and Newton-Raphson's method. Finite differences, relation between operators, interpolation using Newton's forward and backward difference formulae. Interpolation with unequal intervals: Lagrange's formula. (All theorems/properties without proofs)	CO1,CO2, CO4
II	Numerical Differentiation and Integration Numerical Differentiation- Newton's forward and backward difference formulae. Numerical integration- trapezoidal rule, Simpson's $(\frac{1}{3})^{rd}$ and $(\frac{3}{8})^{th}$ rules. Ordinary differential equations: Euler's, modified Euler's, Runge-Kutta method of fourth order for solving first order equations. (All theorems/properties without proofs)	CO1,CO2,
III	Probability Random variables (discrete and continuous), probability density functions, probability distribution: Binomial - Poisson - normal distribution and their properties (mathematical expectation and variance). (All theorems/properties without proofs)	CO1,CO3, CO5
IV	Testing of Hypothesis Formulation of null hypothesis, critical regions, level of significance. Large sample tests: Test for single proportion, difference of proportions, test for single mean and difference of means.	CO1,CO3,

PVP23

	Small Sample Tests	CO1,CO3,
\mathbf{V}	Student's t-distribution (single mean, two means and paired t-test), Testing of equality of	CO1,CO3,
	variances (F-test)	CO3

Learning Resource(s)

Text Book(s)

- 1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 44/e, 2019.
- 2. Numerical Methods by T. Veerarajan, Tata McGeaw-Hill Education Publishers.
- 3. Miller and Freund's, Probability and Statistics for Engineers, Pearson.

Reference Book(s)

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 9/e, John Wiley & Sons, 2006.
- 2. T.K.V.Iyenger, Krishna Gandhi and others, Probability & Statistics, S.Chand.

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/111/107/111107105/
- 2. https://nptel.ac.in/courses/111/105/111105041/
- 3. https://nptel.ac.in/courses/111/106/111106112/
- 4. https://nptel.ac.in/courses/111/105/111105090/5.FED

Moodle