PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous)

Kanuru, Vijayawada-520007

DEPARTMENT OF CSE (Data Science)

II B.Tech – I Semester CSE (Data Science)

Advanced Data Structures and Algorithm Analysis

Course Code	23DS3301	Year	II	Semester	I	
Course Category	Professional Core	Branch	CSE (Data Science)	Course Type	Theory	
Credits	3	L-T-P	3-0-0	Prerequisites	Data Structures through C, Object Oriented Programming	
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100	

	Course Outcomes						
Upon successful completion of the course, Student will be able to							
CO1	Describe the fundamental concepts of Trees, Graphs and Algorithm analysis.	L2					
CO2	Apply the concepts of Trees and Graphs for solving problems effectively.	L3					
CO3	Apply various algorithm design techniques for solving problems.	L3					
CO4	Analyze the given scenario and choose appropriate algorithm design for solving problems.	L4					

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)										tions			
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3											2		
CO3	3											2		
CO4		3										2		

Unit No.	Syllabus Contents					
I	 Introduction-Algorithm Analysis, Space and Time Complexity analysis, Asymptotic Notations. AVL Trees - Creation, Insertion, Deletion operations. B-Trees - Creation, Insertion, Deletion operations. 	CO1, CO2				
II	Heap Trees (Priority Queues) – Min and Max Heaps, Operations and Applications Graphs – Terminology, Representations, Basic Search and Traversals, Sets and Disjoint set Union, Applications.					
III	Divide and Conquer- The General Method, Max-Min, Quick Sort, Merge Sort, Strassen's matrix multiplication. Greedy Method-General Method, Job Sequencing with deadlines, Knapsack Problem, Minimum cost spanning trees, Single Source Shortest Paths					
IV	Dynamic Programming- General Method, All pairs shortest paths, Single Source Shortest Paths— General Weights (Bellman Ford Algorithm), Optimal Binary Search Trees, 0/1 Knapsack, String Editing, Travelling Salesperson problem.					
v	 Backtracking- General Method, n-Queens Problem, Sum of Subsets problem, Graph Coloring. Branch and Bound-The General Method, 0/1 Knapsack Problem, Travelling Salesperson problem. Introduction to Complexity Classes- P and NP Problems, NP-Complete Problems. 	CO1, CO3, CO4				

Learning Resources

Text Books

- 1. Fundamentals of Data Structures in C++, Ellis Horowitz, Sartaj Sahni, Dinesh Mehta, 2nd Edition, Universities Press.
- 2. Computer Algorithms in C++, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, 2nd Edition University Press.
- 3. Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni , Sanguthevar Rajasekaran, 2nd Edition, Universities Press.

References

- 1. Data Structures and program design in C, Robert Kruse, Pearson Education, Asia.
- 2. An introduction to Data Structures with applications, Trembley & Sorenson, McGraw Hill.
- 3. The Art of Computer Programming, Fundamental Algorithms, Donald E Knuth, 1997, Vol.1, Addison-Wesley.
- 4. Data Structures using C & C++, Langsam, Augenstein & Tanenbaum, 1995, Pearson.
- 5. Fundamentals of Data Structures in C++, Horowitz Sahni & Mehta, Galgottia Pub.
- 6. Data structures in Java, Thomas Standish, Pearson Education, Asia.

e-Resources and other Digital Material

- 1. https://www.tutorialspoint.com/advanced_data_structures/index.asp
- 2. http://peterindia.net/Algorithms.html
- 3. Abdul Bari, Introduction to Algorithms (youtube.com)