CHEMISTRY

(Common to IT,CSE-AIML,CSE-DS)

		,	,		
Course Code	23BS1202	Year	Ι	Semester	II
Course Category	Basic Sciences	Branch	CSE (DS)	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Nil
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

	Course Outcomes
Upon su	accessful completion of the course, the student will be able to
CO1	Interpret fundamental concepts of chemistry. (L2)
CO 1	Apply knowledge of quantum mechanics, materials and energy sources to describe and solve
CO 2	problems. (L3)
CO3	Utilize knowledge of conducting polymers and instrumentation to design and develop new
COS	materials.(L3)
CO4	Analyze bonding models, Modern engineering materials, and electrochemical processes to
CO4	make informed decisions.(L4)
COF	Analyze the applications of polymers and instrumentation methods . (L4)
CO5	

	Con	tribut								nt of Pr lium, 1:		Outcor	nes &	
	PO1	PO2	P O3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3													
CO4		3							1	1				
CO5		3							1	1				

	SYLLABUS	
Unit	Contents	Mapped
No.		СО
	UNIT I Structure and Bonding Models:	CO1,CO2,
	Fundamentals of Quantum mechanics, Schrodinger Wave equation, significance	CO4
Ι	of Ψ and Ψ 2, particle in one dimensional box, molecular orbital theory – bonding	
	in homo-and hetero nuclear diatomic molecules – energy level diagrams of O2	
	and CO etc. π -molecular orbitals of butadiene and benzene-calculation of bond	
	order.	
II	UNIT II Modern Engineering materials Semiconductors-	CO1,CO2,
	Introduction, basic concept, applications.	CO4
	Super conductors-Introduction, basic concept, applications.	
	Super capacitors- Introduction, Basic Concept,	
	Classification and Applications.	
	Nano materials-Introduction, classification, properties and	
	applications of Fullerenes, carbon Nano tubes, Graphines	
	and nanoparticles.	

Academic Rules and Regulations PVP-23

	UNIT III Electrochemistry and Applications	CO1,CO2,
	Electrochemical cell, Nernst equation, cell potential calculations and numerical	CO4
	problems. potentiometry- potentiometric titrations (redox titrations), concept of	
III	conductivity, conductivity cell, conduct metric titrations (acid-base titrations).	
	Electrochemical sensors – potentiometric sensors with examples, amperometric	
	sensors with examples. Primary cells – Zinc-air battery, Secondary cells – lithium-ion batteries- working of the batteries including cell reactions.	
	Fuel cells- hydrogen-oxygen fuel cell– working of the cells. Polymer Electrolyte	
	Membrane Fuel cells (PEMFC).	
	UNIT IV Polymer Chemistry	CO1,CO3,
	Introduction to polymers, functionality of monomers, chain growth and step growth polymerization, coordination polymerization with specific examples and	CO1,CO3, CO5
	mechanisms of polymer formation	005
IV	Plastics –Thermo and Thermosetting plastics, Preparation, properties and	
	applications of – PVC, Teflon, Bakelite, Nylon-6,6, carbon fibres.	
	Elastomers–Buna-S,Buna-N–preparation, properties and applications.	
	Conducting polymers – poly acetylene, poly aniline, – mechanism of conduction	
	and applications. Bio-Degradable polymers - Poly Glycolic Acid (PGA), Polyl	
	Lactic Acid (PLA).	
	UNIT V Instrumental Methods and Applications	
V	Electromagnetic spectrum- Absorption of radiation- Beer-Lambert's law. UV-	C01,C03,
v	Visible Spectroscopy, electronic transition, Instrumentation, IR spectroscopies,	CO5
	fundamental modes and selection rules, Instrumentation. Chromatography-Basic	
	Principle, Classification. HPLC: Principle, Instrumentation and Applications.	

Learning Resources

Text Books:
1. Jain and Jain, Engineering Chemistry, 16/e, Dhanpat Rai, 2013.
2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e,
Oxford University Press, 2010.
Reference Books:
1. Skoog and West, Principles of Instrumental Analysis, 6/e, Thomson, 2007.
2. J.D. Lee, Concise Inorganic Chemistry, 5th Edition, Wiley Publications, Feb.2008
3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition
E-Resources:
https://nptel.ac.in/courses/103108100
https://onlinecourses.nptel.ac.in/noc23_cy19/preview
https://nptel.ac.in/courses/118104008