PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

B.Tech CSE (AI&ML) - II Year – I I Semester

Machine Learning Lab

Course Code	23AM34 51	Year	II	Semester	II	
Course Category	PCC Lab	Branch	CSE(AI&ML)	Course Type	Practical	
Credits	1.5	L-T-P	0-0-3	Prerequisites	Python Programming	
Continuou s Internal Evaluation	30	Semester End Examination	70	Total Marks	100	

	Course Outcomes						
Upon suc	Upon successful completion of the course, the student will be able to						
COI	Demonstrate experimental procedures through oral communication and submit comprehensive documentation reports.	L2					
CO2	Apply supervised and unsupervised machine learning techniques for developing predictive and descriptive models using tools.	L3					
	Analyze machine learning problems, and critically assess their performance and limitations.	L4					
CO4	Evaluate the performance of machine learning models using suitable metrics across various datasets.	L5					

	Contribution of Course Outcomes towards achievement of Program Outcomes& Strength of correlations (3:High,2:Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2				
CO2	3				3								3	
CO3		3										2		2
CO4				3								2		2

PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

Syllabus					
Expt No.	Contents	Mapped CO			
1	Explore different Tools: Jupyter Notebook, PyTorch, TensorFlow, Google Colab, Kaggle.	CO1			
2	Explore the different dataset: Kaggle, UCI Machine Learning Repository	CO1			
3	Retrieve, preprocess, explore, and visualize the data to gain valuable insights and prepare it effectively for machine learning.	CO1			
4	Develop and implement linear and non-linear regression models, and evaluate their performance using a comprehensive set of appropriate metrics across various datasets.				
5	Implement logistic regression on different datasets & evaluate using accuracy, precision, recall, AUC-ROC to assess generalizability.	CO1 to			
6	Implement Decision Tree Learning Algorithm on different datasets & evaluate using accuracy, precision, recall, F1-Score to assess generalizability	CO1 to			
7	Evaluate the performance of KNN on various Datasets using Accuracy as the metric, with a focus on determining the optimal number of neighbors (K).	CO1 to			
8	Implement Support Vector Machines (SVM) for classification on various datasets and evaluate their performance using confusion matrices, precision, recall, and F1 scores.				
9	Implement a simple perceptron and multi-layer perceptron to classify handwritten digits using the MNIST dataset.	CO1 to			
10	Evaluate ANNs for image recognition (e.g., MNIST). Compare with SVMs & KNNs using accuracy, precision, recall, F1. Explore ANN strengths & weaknesses: impact of network architecture & data quality, and interpretability vs. other algorithms.				
11	Implement Partitioning Clustering Methods on various datasets and evaluate their performance.	CO1 to			
12	Implement Hierarchical Clustering Methods on various datasets and evaluate their performance.	CO1 to			
13	Capstone Project: Development of a robust end-to-end machine learning pipeline adhering to the Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology, culminating in a comprehensive paper that elucidates the chosen machine learning technique, the specific application domain, and the empirical results obtained	CO1 to			

PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

Learning Resources

Text Books

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Aurelien Geron, Third Edition, 2022, O'Reilly
- 2. Pattern Recognition and Machine Learning, Christopher M. Bishop, First Edition, 2016, Springer

Reference Books

- 1. Machine Learning, Tom M. Mitchell, First Edition, 2017, McGraw Hill Education
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press

e- Resources & other digital material

- 1. Practical Machine Learning with TensorFlow: https://nptel.ac.in/courses/106106213
- 2. https://www.tensorflow.org/tutorials
- 3. https://pytorch.org/tutorials/