PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

B.Tech CSE (AI&ML) - II Year – II Semester Machine Learning

Course Code	23AM3401	Year	II	Semester	II
Course Category	PCC	Branch	CSE(AI&ML)	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Artificial Intelligence
Continuou s Internal Evaluation	20	Semester End Examinatio n	70	Total Marks	100

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Describe the fundamental concepts, principles, and techniques in machine learning.	L2					
CO2	Apply supervised learning algorithms to build predictive models for classification and regression problems.	L3					
CO3	Utilize unsupervised learning techniques to discover meaningful patterns and groupings within unlabeled data.	L3					
CO4	Analyze machine learning problems, choose suitable algorithms, and critically assess their performance and limitations.	L4					

	Contribution of Course Outcomes towards achievement of Program Outcomes& Strength of correlations (3:High,2:Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3											2	3	
CO3	2											2	2	
CO4		3										2		2

PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous)

Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

Syllabus						
Unit No.	Contents					
I	Introduction to Machine Learning: Definition, Need of Machine Learning, Types of Machine Learning, Applications, Challenges of Machine Learning. End-to-End Machine Learning Project: Frame the Problem, Get the data, Explore and visualize the data to Gain Insights, Prepare the data for Machine Learning Algorithms, Select a Model and Train it, Evaluation, Fine-tune model, Deployment and Maintain System, CRISP DM	CO1				
II	Linear Regression: Introduction, Simple Linear Regression, Multiple Linear Regression, Model Fitting, Gradient Descent optimization algorithm, Evaluation Metrics, Assumptions and Limitations, Applications. Non-Linear Regression: Polynomial Regression, Applications. Logistic Regression: Binary Classification, Evaluation metrics, Applications.					
ш	Decision Tree Induction: Introduction, Decision Tree Representation, Attribute Selection Measures, Decision Tree Learning Algorithm, Metrics for Evaluating Classifier Performance K-Nearest Neighbors (KNN): Introduction, Algorithm, Distance Metrics, Strengths and Limitations, Applications. Bayes Classification Methods: Bayes' Theorem, Naïve, Bayesian Classification algorithm, Applications.					
IV	Support Vector Machine (SVM): Introduction, Concept of Margin, Support Vectors, Linear SVM Classification Algorithm, Applications. Artificial Neural Networks (ANN): Introduction, Biological Neurons, Artificial Neurons, Perceptron, Multi-layer Perceptron, performing logical operations, Feedforward Network, Backpropagation Algorithm, Applications.	CO1, CO2,				
v	Cluster Analysis: Introduction to Cluster Analysis, Basic Clustering Methods, Measures of Similarity and Dissimilarity, Metrics for Evaluating Clustering Performance, Applications. Partitioning Methods: K-Means and K-Medoids algorithms, Applications. Hierarchical Methods: Agglomerative and Divisive Approaches, Linkage Criteria.					

Learning Resources

Text Books

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, AurelienGeron, Third Edition, 2022, O'Reilly
- **2.** Pattern Recognition and Machine Learning, Christopher M. Bishop, First Edition, 2016, Springer

PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

Reference Books

- 1. Machine Learning, Tom M. Mitchell, First Edition, 2017, McGraw Hill Education
- 2. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press

e- Resources & other digital material

- 1. Introduction to Machine Learning: https://nptel.ac.in/courses/106105152
- 2. Introduction to Machine Learning: https://nptel.ac.in/courses/106106139
- 3. Machine Learning: https://nptel.ac.in/courses/106106202
- 4. Machine Learning by StatQuest with Josh Starmer https://www.youtube.com/user/joshstarmer
- 5. Introduction to Machine Learning by Google Developers https://www.youtube.com/@GoogleDevelopers/videos
- 6. Machine Learning Lectures by Nando de Freitas (University of Oxford) https://www.youtube.com/user/ProfNandoDF
- 7. Machine Learning by Andrew Ng (Coursera) Published by Stanford Online https://www.youtube.com/watch?v=jGwO_UgTS7I&list=PLoROMvodv4rMiGQp3 WXShtMGgzqpfVfbU