LINEAR ALGEBRA & CALCULUS (Common to all branches)

Course Code	23BS1101	Year	I	Semester	I
Course Category	Basic Science	Branch	CSE (AIML)	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	NIL
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to				
CO1	Interpret the basic concepts of Linear algebra and Calculus.(L2)				
CO2	Apply the echelon form to obtain the solution of system of linear equations and eigen				
	vectors of a matrix.(L3)				
	Apply the concepts of calculus to find the series expansion and extremum of a given				
	function, area enclosed by plane curves and volume of the solids.(L3)				
CO4	Analyze the solution set of linear system of equations and nature of the quadratic forms.				
	(L4)				
	Analyze the behavior of functions using mean value theorems, extremum of the given				
	function and limits of integration for functions of several variables.(L4)				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1	2													
CO 2	3													
CO 3	3													
CO 4		3							1	1				
CO 5		3							1	1				

SYLLABUS						
Unit	Unit Contents					
No.		CO				
I	Matrices	CO1,				
	Rank of a matrix by echelon form, normal form. Cauchy-Binet formulae (without	CO2,				
	proof). Inverse of Non- singular matrices by Gauss-Jordan method, System of linear	CO4				
	equations: Solving system of Homogeneous and Non-Homogeneous equations by					
	Gauss elimination method, Jacobi and Gauss Seidel Iteration Methods.					
II	Eigen values, Eigen vectors and Orthogonal Transformation	CO1,				
	Eigen values, Eigen vectors and their properties, Diagonalization of a matrix,	CO2,				
	Cayley-Hamilton Theorem(without proof), finding inverse and power of a matrix by	CO4				
	Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms,					
	Reduction of Quadratic form to canonical forms by Orthogonal Transformation.					
	Calculus	CO1,				
III	Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem with their	CO3,				
	geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurin	CO5				
	theorems with remainders (without proof), Problems and applications on the above					
11.7	theorems. Partial differentiation and Applications (Multivariable calculus)	001				
IV	Partial differentiation and Applications (Multivariable calculus) Functions of several variables: Continuity and Differentiability, Partial derivatives,	CO1,				
	total derivatives, chain rule, Taylor's and Maclaurin's series expansion of functions	CO3, CO5				
	of two variables. Jacobians, Functional dependence, maxima and minima of	003				
	functions of two variables, method of Lagrange multipliers.					
V	Multiple Integrals (Multi variable Calculus)	CO1,				
•	Double integrals, triple integrals, change of order of integration, change of variables	CO3,				
	to polar, cylindrical and spherical coordinates. Finding areas (by double integrals)	CO5,				
	and volumes (by double integrals and triple integrals).					

-	•	-	
Ι Δ	arning	KOCO	TIPCAC
\mathbf{L}	aimme	17630	uiccs

Text Books:

- 1. Higher Engineering Mathematics, B.S.Grewal, Khanna Publishers, 2017, 44th Edition
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons, 2018,10 th Edition.

Reference Books:

- Thomas Calculus, George B. Thomas, Maurice D. Weir and Joel Hass, Pearson Publishers, 2018, 14th Edition.
- 2. Advanced Engineering Mathematics, R.K.Jain and S. R.K.Iyengar, Alpha Science International Ltd., 2021 5th Edition (9threprint).
- 3. Advanced Modern Engineering Mathematics, Glyn James, Pearson publishers, 2018, 5th Edition.
- 4. Advanced Engineering Mathematics, Micheael Greenberg, Pearson publishers, 9th edition
- 5. Higher Engineering Mathematics, H.K Das, Er.Rajnish Verma, S.Chand Publications, 2014, Third Edition (Reprint2021).

E-Resources:

- **1.** https://nptel.ac.in/courses/111/108/111108157/
- 2. https://youtu.be/xDSejIvZmg4
- 3. https://nptel.ac.in/courses/111104125