OR

Explain the usage of try, catch, throw,
throws and finally keywords in exception
handling. Give simple example.

L2

CO3

5M

[lustrate the difference between byte
streams and character streams in Java.
Draw the stream hierarchies.

L3

CO3

SM

UNIT-V

10

Explain how thread prionty is set and
used in Java with example program.

L4

CO4

5M

Illustrate the use of HashSet class in
collection framework with an example
program.

L3

CO4

5M

OR

11

Analyze different procedures for creating
a thread in Java. Explain any one
mechanism with example program.

L4

CO4

SM

PVP 23

Code: 23C83302, 23IT3302, 23AM3302, 23DS3302

—

II B.Tech - I Semester — Regular Examinations - DECEMBER 2024

Duration: 3 hours

OBJECT ORIENTED PROGRAMMING THROUGH

JAVA
(Common for CSE, IT, ATML, DS)

Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

BL — Blooms Level

2. Part-A contains 10 short answer questions. Each Question carries 2
Marks.

3. Part-B contains 5 essay questions with an internal choice from each unit.
Each Question carries 10 marks.
4. All parts of Question paper must be answered in one place.

CO — Course Qutcome

b)

Define List and differentiate ArrayList,
LinkedList.

L2

CO4

5SM

Page 4 of 4

PART - A
BL | CO
1.a) |Develop a program to implement Command Line
: L3 [COl
Arguments in Java.
1.b) |Explain the purpose of type casting in Java. L2 i COl
l.c) |H i ?
¢) |How (.io you access private members of a class L2 | con
Explain.
1.d i hi ith-i
) Ex.plal'n the methods used for searching with-in 12 | con
string in Java.
l.e) |Explain h '
e) 'xp ain how you can dynamically change the 12 | con
size of an array.
1.f) |Defi tract class. Dif 1 i t
f) |Define abstract class. Differentiate with concrete 12 | con
class.
1. 1 ify the di -boxi
g) |Identify t e' differences between auto-boxing and 12 | cos
auto-unboxing.
1.h) |How does the Scanner class facilitate input| L2 | CO3

Page 1 0f 4

operations in Java? Explain.

Li)

Identify the main states in the Java thread life

cycle.

L2

CO4

b)

Explain how you can modify a string
with example program.

L2

cO2

5M

OR

L.j)

What is the purpose of Collection Framework in

Java?

Ll

CO4

PART - B

Describe the process of declaring and
initializing class and objects in Java with
suitable example.

L2

Co2

5SM

BL

CO

Max.
Marks

Construct a Java program to differentiate
passing arguments by Value and by
Reference.

L3

CO2

5SM

UNIT-1

UNIT-III

List and explain different data types
supported by Java. Give suitable example
program.

L2

COl

SM

List and explain different operations that
can be performed on Array elements.

L2

CO2

5M

b)

Write a Java program to calculate the tax
on a salary. The program should prompt
the user to enter their annual salary.

Use the following tax brackets:

Sal< 2,50,000 rupees — No tax

Sal > 2,50,001 and < 5,00,000 - 10% tax
Sal> 5,00,000 — 5% tax

Display the tax amount based on the
entered salary.

L3

CO1

5M

What is inheritance? Explain different
types of inheritance techniques which are
supported by Java.

L2

€o2

5M

OR

Explain the following:
i) final keyword in inheritance
i1) Vector

L2

. § 74

SM

b)

Discuss the concepts of default and static
methods in Interface.

L2

COo2

5M

OR

UNIT-IV

3 |Explain the different types of operators in
Java with examples.

L2

CO1

10 M

UNIT-II

4 | a)

Differentiate constructor overloading and
method overloading. Give suitable

examples.

L3

CO2

5M

How do different access control
specifiers control access to class
members across different packages?
Explain.

L2

€CO3

5SM

Page 2 of 4

b)

Differentiate between checked and
unchecked exceptions. Give suitable
examples.

L3

CO3

5M

Page 3of 4

Code:23CS3302, 23173302, 23AM3302, 23DS3302 PVP23
IT B.Tech. - I Semester-Regular Examinations - DECEMBER 2024
OBJECT ORIENTED PROGRAMMING THROUGH JAVA

(Common to CSE, IT, AIML, DS)

Duration:3 hours Maximum Marks : 70

Note: 1. This Question paper contains Part A and B

2. Part A Contains 10 short answer Questions. Each question carries 2 Marks

3. Part B contains 5 essay Questions with an internal choice from each unit. Each question
carries 10 Marks.

4. All parts of the question paper must be answered in one place.

BL — Blooms Level CO - Course Outcomes

PART - A

1.a) Develop a program to implement Command Line arguments in Java. L3 CO1

Any Simple Java Program and show how to give values at the time of running a program at
command prompt «~ 2.pn

1.b) Explain the purpose of type casting in Java. L2 CO1
Implicit — 1 M Explict — 1M

1.c) How do you access private members of a class? Explain. L2 CO2
Accessing private members of a class i.e. either variable or method — 2M

1.d) Explain the methods used for searching with-in String in Java. L2 CO2
Atleast 2 methods with syntax and example — 2M

1.e) Explain how you can dynamically change the size of an Array. L2 CO2
Dynamically Array Size change explanation — 2M

1.f) Define abstract class. Differentiate with concrete class. L2 CO2
Abstract class definition — 1M , Difference with concrete class — 1M

1.g) Identify the differences between auto-boxing and auto-unboxing. L2 CO3

Differences between auto-boxing and auto-unboxing.

1.h) How does the Scanner class facilitate input operations in Java? Explain. L2 CO3
Taking input for different primary data types using scanner class methods — 2M

1.i) Identify the main states in the Java thread life cycle. L2 CO4
List of thread classes — 2M

1.j) What is the purpose of Collection Framework in Java? L2 CO4

Collection framework purpose — 2M

PART -B

UNIT -1

2. a) List and Explain different data types supported by Java. Give suitable example
Program. L2 CO1 SM

Data types list — 2M
Example Program — 3M

b) Write a java program to calculate the tax on a salary. The program should prompt
the user to enter their annual salary.
Use the following tax brackets:
Sal<2,50,00 rupees — No tax
Sal>2,50,001 and Sal<5,00,000 - 10% tax
Sal > 5,00,000 — 5% tax.

Display the tax amount based on the entered salary. L3 CO1 SM
Input — 1M
Conditions — 3M Display/Output — 1M
OR

3. Explain the different types of operators in Java with examples. 12 CO1 10M
List of operators —3 M
Example programs — 7TM
UNIT-1I

4. a) Differentiate constructor overloading and method overloading. Give suitable
examples. L3 CO2 SM

Differences between constructor and method overloading — 3M

Example — 2M

8.

b) Explain how you can modify string with example Program. L2 CO2
5 methods with syntax and example — 5 M
OR

a) Describe the process of declaring and initializing class and objects in Java
with suitable example. ‘ L2 CO2

Declaring and initializing class =2 2 M
Declaring and initializing object =2 2 M

b) Construct a Java Program to differentiate passing arguments by value and by
Reference. L3 CO2
Passing arguments by values —2 %4 M

Passing arguments by Reference -2 4 M

UNIT - III

a) List and explain different operations that can be performed on Array
elements. L2 CO2

Array operations with syntax and example — 5M

b) What is inheritance? Explain different types of inheritance techniques which
are supported by Java. L2 CO2
Inheritance definition — 1M

3 types explanation — 4M

OR
a) Explain the following L2 CO2
i) final keyword in inheritance ii) vector
final keyword -2 /2 M
vector—2 /2 M
b) Discuss the concepts of default and static methods in interface. L2 CO2

default method in interfaces concept — 2 2 M
static method in interfaces concept — 2 ¥2 M
UNIT -1V

a) How do different access control specifiers control access to class members

SM

SM

SM

SM

SM

SM

M

across different packages? Explain. L2 CO3 5SM
Access control specifiers accessing in classes and packages explanation — SM
b) Differentiate between checked and unchecked exceptions. Give suitable
examples. L3 CO3 5M
Differences between checked and unchecked exceptions with example — SM
OR
9. a) Explain the usage of try, catch, throw, throws and finally keywords in
exception handling. Give simple example. L2 CO3 5SM
each keyword with example — 5M
b) Illustrate the difference between byte stream and character streams in Java.
Draw the stream hierarchies. L3 CO3 SM
Differences between byte stream and character stream — 4M
Stream hierarchies — 1 M
UNIT -V
10. a) Explain how thread priority is set and used in Java with example
program. L4 CO4 5M
Thready priority explanation — 2M Example Program - 3M
b) Illustrate the use of HashSet class in collection framework with an
example program. L3 CO4 SM
usage of HashSet in java — 2M Example Program — 3M
OR
11. a) Analyze different procedures for creating a thread in Java. Explain any one
mechanism with example program. L4 CO4 SM
Different ways of Creation of a thread in java explanation -2 M
Example program — 3M
b) Define List and differentiate ArrayList, Linked List. L2 CO4 5M

List definition — 1 M

Differentiate with Array List — 2 M, with Linked List — 2M

Code:23CS3302, 231T3302, 23AM3302, 23DS3302 PVP23
IT B.Tech. - I Semester-Regular Examinations - DECEMBER 2024
OBJECT ORIENTED PROGRAMMING THROUGH JAVA

(Common to CSE, IT, AIML, DS)

Duration:3 hours Maximum Marks : 70

Note: 1. This Question paper contains Part A and B

2. Part A Contains 10 short answer Questions. Each question carries 2 Marks

3. Part B contains 5 essay Questions with an internal choice from each unit. Each question
carries 10 Marks.

4. All parts of the question paper must be answered in one place.

BL — Blooms Level CO — Course Outcomes

PART - A
1.a) Develop a program to implement Command Line arguments in Java. L3 COl1

public class AddNumbers {

public static void main(String[] args)

// Convert the string arguments to integers
int numl = Integer.parselnt(args[0]);

int num? = Integer.parselnt(args[1]);

int result = num1 + num2;

System.out.printIn("The sum of " + numl1 + " and " + num2 + " is: " + result);

}

}
1.b) Explain the purpose of type casting in Java. L2 CO1

In Java, type casting is the process of converting a variable from one type to another.
There are two types of casting

1. Implicit Type Casting (Automatic Casting): This occurs when you assign a value of a
smaller or narrower data type to a larger or wider data type. Java performs this conversion
automatically because it is safe and does not result in data loss.

Example:
// Implicit Type Casting (Automatic Casting)
int intValue = 100;

double doubleValue = intValue; // int is automatically cast to double

2. Explicit Type Casting (Manual Casting): This is necessary when you want to convert a
value from a larger or wider data type to a smaller or narrower data type. Since this
conversion might result in data loss, you need to specify it explicitly.

// Explicit Type Casting (Manual Casting)
double doubleValue2 = 9.78;
int intValue2 = (int) doubleValue2; // double is manually cast to int

1.c) How do you access private members of a class? Explain. L2 CO2

When we use a private access specifier, the method is accessible only in the classes in
which it is defined.

class A{
private int data=40;
private void msg()

{ System.out.printIn("Hello java");}
J

public class Simple{

public static void main(String args[]){
A obj=new A():
System.out.println(obj.data);//Compile Time Error
obj.msg();//Compile Time Error

}
}

In this example, we have created two classes A and Simple. A class contains private data member
and private method. We are accessing these private members from outside the class, so there is a
compile-time error.

1.d) Explain the methods used for searching with-in String in Java. L2 CO2

contains() : Checks if a substring exists in the string.
indexOf() :Returns the index of the first occurrence of the specified substring or character.
Returns -1 if not found.

charAt(int index) : The charAt(int index) method in Java'is used to retrieve the character at a
specific position (index) in a string.

lastIndexOf(char c) : The lastindexOf() method starts searching backward from the end of the
string and returns the index of specified characters whenever it is encountered.

lastIndexOf(char c, int fromIndex) : It starts searching backward from the specified index in the
string. And returns the corresponding index when the specified character is encountered otherwise

returns -1.
Note: The returned index must be less than or equal to the specified index.

1.e) Explain how you can dynamically change the size of an Array. L2 CO2
The number of elements (size) of the array may change during the execution of the program.

In Java, change the number of elements by dynamically retaining the array name. In this process,
the old array is destroyed along with the values of elements.

Example: int [] num = new int [5];
num = new int [10];

(or)

To dynamically change the size of an array, we can create a new array with a different capacity
and copy the elements from the old array to the new one using the Arrays.copyOf() method. We
can then delete the old array and replace it with the new one.

Example :

int[] oldArray = {1, 2, 3};

int[] newArray = Arrays.copyOf(oldArray, 5); // New size is 5
newArray[3] = 4;

newArray[4] = 5;
System.out.printIn(Arrays.toString(newArray));

1.f) Define abstract class. Differentiate with concrete class. L2 CO2

Abstract Class: An abstract class in Java is a class that cannot be instantiated directly and is
intended to be extended by other classes. It serves as a blueprint for other classes, providing a way
to define methods that must be implemented by subclasses, as well as methods that can have
default behaviour. We cannot create an object of an abstract class. It is meant to be inherited by
other classes. An abstract class can contain both abstract methods (without implementation) and
non-abstract methods (with implementation).

Concrete Class: A concrete class is a class that can be instantiated and provides implementation
for all its methods. It may or may not inherit from an abstract class.

Difference:

| Abstract Class “ Concrete Class

[1. Cannot be instantiated directly. 1| 1. Can be instantiated.

2. May contain abstract methods (without
implementation).

2. Does not contain abstract methods.

Abstract Class

“ Concrete Class

l 3. Meant to be inherited by subclasses.

| 3. Can be inherited but doesn't need to be.

4. Provides a template for other classes.

4. Fully implements methods and can be used
directly.

1.g) Identify the differences between auto-boxing and auto-unboxing.

L2 CO3

} Autoboxing

!r Unboxing

The automatic conversion of a primitive type
to its corresponding wrapper class.

The automatic conversion of a wrapper class
object to its corresponding primitive type.

Primitive values are converted into wrapper
objects.

Wrapper objects are converted into primitive
values.

Occurs when a primitive type is assigned to a
wrapper class.

Occurs when a wrapper class object is assigned to
a primitive type.

public class autoboxing {
public static void main(String args[]) {
// Converting int into Integer (Manual)
int a = 20;
// Converting int into Integer using
valueOf()
Integer i = Integer.valueOf{a);

// Autoboxing (Automatic)

Integer j = a; // Autoboxing: compiler
internally uses Integer.valueOf(a)
System.out.println(a+" " +i+" " +j);

}
}

public class autounboxing {
public static void main(String args[]) {

// Converting Integer to int (Manual)
// Creates an Integer object

Integer a = new Integer(3);

int i = a.intValue(); // Converting Integer to
int using intValue()

// Unboxing (Automatic)

int j = a; // Unboxing: compiler internally
uses a.intValue()

System.out.println(a +" " +1+" " +j);

1.h) How does the Scanner class facilitate input operations in Java? Explain.

L2 CO3

The Scanner class in Java facilitates input operations by providing methods to read different
types of data from various input sources such as the keyboard, files, or streams.

Scanner class is in java.util package.

It allows the user to read data like strings, integers, and other primitive types using methods

like nextlnt(), nextLine(), nextDouble(), etc.

e nextLine() reads a full line of text as a String.

e nextInt() reads an integer.

e nextDouble() reads a decimal number (double).

1.i) Identify the main states in the Java thread life cycle.

L2 CO4

e Newborn State: The thread is created but not yet started.

Runnable State: The thread is ready to run and waiting for CPU time.

Running State: The thread is currently executing its task.

Blocked State: The thread is waiting to acquire a resource (e.g., locked by another thread).
Dead State: The thread has completed its execution or terminated.

1.j) What is the purpose of Collection Framework in Java? L2 CO4

2.

The Java Collections Framework is a set of classes and interfaces that help represent and
manipulate collections of objects.

The purpose of the Collection Framework in Java is to provide a unified architecture for
storing, managing, and manipulating g..ups of objects in a standardized and efficient manner.
It offers a set of interfaces, implementations, and algorithms for handling data structures, such
as lists, sets, and queues, ensuring flexibility, reusability, and performance optimization in
Java programs.

PART -B

UNIT -1

a) List and Explain different data types supported by Java. Give suitable example
Program. L2 CO1 5M

Data types specify the different sizes and values that can be stored in the variable.

I

1
2
3
4
5

7

8

Primitive datatypes: Primitive Data Types are predefined and available within the Java
language.

.Byte: Represents an 8-bit signed integer. Range: -128 to 127 Default Value: 0

.short: Represents a 16-bit signed integer. Range: -32,768 to 32,767Default Value: 0

.nt: Range: -2"31 to 2”31-1 Default Value: 0

Jdong: Represents a 64-bit signed integer. Range: -2°63 to 2°63-1 Default Value: OL

float: Represents a single-precision 32-bit IEEE 754 floating-point. Range: Approximately
+3.40282347E+38F (6-7 significant decimal digits) Default Value: 0.0f 6.double: Represents

a double-precision 64-bit IEEE 754 floating-point. Range: Approximately

+1.79769313486231570E+308 (15 decimal digits) Default Value: 0
.char: Represents a single 16-bit Unicode character. Range: 0 to 65,535 Default Value:

"u0000'

.boolean: Represents a value of true or false. Range: true or false Default Value: false

II. Non-primitive Datatypes:

1. String: Represents a sequence of characters.

2. Arrays: Represents a collection of elements of the same type.

3. Class : Represents a template to the data which consists of member variables and methods.
4. Objects: Represents instances of classes.

5. Interfaces: It is similar to a class however the only difference is that its methods are
abstract by default i.e. they do not have body. An interface has only the final variables and
method declarations. It is also called a fully abstract class.

public class DataTypeDemec {

public static void main(String[] args) {

byte byteValue = 10;

short shortValue = 1000;

int intValue = 100000;

long longValue = 10000000000L;

float floatValue = 10.5f;

double doubleValue = 20.99;

char charValue ="'A’";

boolean booleanValue = true;

String string Value = "Hello, World!";

int[] intArray = {1, 2, 3, 4, 5};
System.out.println("Primitive Data Types:");
System.out.println("byteValue: " + byteValue);
System.out.println("shortValue: " + shortValue);
System.out.println("intValue: " + intValue);
System.out.println("longValue: " + longValue);
System.out.printIn("floatValue: " + floatValue);
System.out.printIn("doubleValue: " + doubleValue);
System.out.printIn("charValue: " + charValue);
System.out.printIn("booleanValue: " + booleanValue);
System.out.println("\nReference Data Types:"),
System.out.println("stringValue: " + stringValue);
System.out.print("intArray: ");

for (int i = 0; i < intArray.length; i++) {
System.out.print(intArray[i] + " ");

}

System.out.println();

H

i

b) Write a java program to calculate the tax on a salary. The program should prompt the
user to enter their annual salary.

Use the following tax brackets:

Sal<2,50,00 rupees — No tax

Sal>2,50,001 and Sal<5,00,000 - 10% tax

Sal > 5,00,000 — 5% tax.

Display the tax amount based on the entered salary. L3 CO1 SM

import java.util.Scanner;
public class SalaryTaxCalculator {
public static void main(String[] args) {
// Create a Scanner object for user input
Scanner sc = new Scanner(System.in);
// Prompt the user to enter their annual salary
System.out.print("Enter your annual salary: ");
double salary = sc.nextDouble();
// Variable to store the calculated tax
double tax = 0;
// Calculate tax based on salary brackets
if (salary <= 250000) {
tax = 0; // No tax for salaries <= 2,50,000

else if (salary > 250000 && salary <= 500000) {
tax = (salary - 250000) * 0.10; // 10% tax for the portion above 2,50,000

else if (salary > 500000) {
/1 ' 10% tax for the portion between 2,50,001 and 5,00,000 and 5% for the portion above
5,00,000

tax = (salary - 500000) * 0.05 + (250000 * 0.10);

// Display the tax amount
System.out.printf("The tax amount for a salary of %.2f is: %.2{%n", salary, tax);
// Close the scanner

sc.close();

OR

3. Explain the different types of operators in Java with examples. L2 CO1 10M

Java provides a wide range of operators to perform different types of operations on variables
and values. Below are the main types of operators in Java along with examples:

1. Arithmetic Operators

These operators are used to perform basic mathematical operations.

Operator Description Example
+ Addition a+b

- Subtraction a-b

* Multiplication a*b

/ Division al/b

% Modulus (remainder) a%b

Example:

inta=10,b=35;
System.out.println(a + b); // Output: 15
System.out.println(a % b); // Output: 0

2. Relational (Comparison) Operators

These operators are used to compare two values.

Operator Description Example
= Equal to a==

I= Not equal to al=b

> Greater than a>b

< Less than a<b

= Greater than orequalto a>=b

<= Less than or equal to a<=b

Example:

inta=10,b=35;
System.out.println(a > b); // Output: true
System.out.println(a == b); // Output: false

3. Logical Operators
These operators are used to perform logical operations.

Operator Description Example

&& Logical AND (a>b)&& (b>c)

! Logical NOT !(a>b)

Example:
inta=10,b=35,c=15;

System.out.println((a > b) && (b <c¢)); / Output: true
System.out.println(!(a < b)); // Output: true

4. Assignment Operators

These operators are used to assign values to variables.

Operator Description Example
= Assign a=10
= Add and assign a+=b

-= Subtract and assign a-=b

= Multiply and assign a=b
f= Divide and assign a/=b
%= Modulus and assign a%=b
Example:
inta=10,b=75;

at+=b;//a=a+b

System.out.printin(a); // Output: 15

5. Bitwise Operators
These operators perform operations on bits.

Operator ~ Description

& AND
A XOR
~ Complement
o Left shift
>> Right shift
Example:
inta=5b=3;

System.out.println(a & b); // Output: 1
System.out.printin(a << 1); // Output: 10

6. Unary Operators

These operators operate on a single operand.
Operator ~ Description
% Unary plus

- Unary minus

++ Increment

- Decrement

! Logical NOT
Example:
inta=10;

System.out.println(++a); / Output: 11

Example
a&b

OR

~a
a<<?2

a>>2

Example

+a

System.out.println(a--); / Output: 11 (then decrements to 10)

7. Ternary Operator

The ternary operator is a shorthand for an if-else condition.

Syntax:

condition ? expression] : expression2;

Example:

inta=10, b=20;
intmax=(a>b)?a:b;

System.o

8. Instan

ut.printin(max); // Output: 20

ceof Operator

This operator checks whether an object is an instance of a specific class or subclass.

Example:

String str = \"Hello\";
System.out.printIn(str instanceof String); // Output: true

These operators provide powerful ways to manipulate data and control program flow in Java.

Let me know if you need more details or additional examples!

UNIT -11

4. a) Differentiate constructor overloading and method overloading. Give suitable

examples. L3 CO2 5sM
[Aspect “ Method Overloading ” Constructor Overloading]
Method overloading occurs when a class ||Constructor overloading occurs when a
Definition |has multiple methods with the same name|\class has multiple constructors with
but different parameters. different parameter lists.
G Increases the readability and reusability ||Allows multiple ways to initialize an
POS€ 1lof the code. object with different sets of parameters.
Method |Methods are differentiated by the number |Constructors are differentiated by the
Signature |jor type of parameters. number, type, or order of parameters.
Beinm MethoF} S may haYe Aty et fpe, Constructors do not have a return type.
Type including void.
Example By changing the number of arguments: | Constructor with different number of
of void add(int a, int b) and void add(int a, int b, int parameters: Person(String name) and

and void add(double a)

] Aspect | Method Overloading ” Constructor Overloading
Overloadi |c). Person(String name, int age)
ng Type |By changing the data type: void add(int a)

Frequency

More commonly used for methods
performing similar tasks but with

Used to provide different ways to
initialize an object based on the provided

Oflise different input types or amounts. information.
|Aspect |[Meth0d Overloading iConstructor Overloading T
Method or .
TR Ovel.‘l(?aded fnethod.s can be called O‘{erloaded.const{'uctors are called during
or Call explicitly using their parameters. object creation using the new keyword.
public class Student {
//instance variables of the class
int id;
String name;
Student(){
System.out.println("this a default
constructor");
class Adder{ }
static int add(int a, int b) { Student(int i, String n){
return a+b; id=1;
} name = n;
static double add(double a, double b) { ||}
return a+b; public static void main(String[] args) {
. } //object creation
} Student s = new Student();
Program

class TestOverloading?{

public static void main(String[] args){
System.out.printiln(Adder.add(11,11));
System.out.println(Adder.add(12.3,12.6))

Py
}

System.out.println("\nDefault
Constructor values: \n");
System.out.println("Student Id : "+s.id +
"\nStudent Name : "+s.name);
System.out.printIn("\nParameterized
Constructor values: \n");

Student student = new Student(10,
“ABC”);
System.out.println("Student Id :
"+student.id + "\nStudent Name :
"+student.name);

}
}

b) Explain how you can modify string with example Program.

L2 CO2 5M

In Java, string is an object that represents a sequence of characters.
Strings in Java are immutable, meaning once a String object is created, it cannot be changed. Any
operation that tries to modify a string actually creates a new String object.

String methods to modify a string are:
1. String Concatenation:
This method combines a specific string at the end of another string and ultimately returns a

combined string. string concat()

2. String Upper Case: The java string toUpperCase() method converts all the characters of the
String to Upper Case.

3. String Lower Case: The java string toLowerCase() method converts all the characters of the
String to lower case.

4. String substring(int startIndex): A part of string is called substring. This method is used to
extract a portion of a string, starting from a specified index and continuing to the end of the string.

5. String substring(int startIndex, int endIndex):
This method in Java extracts a part of a string, starting from a specified startIndex and ending

before a specified endIndex.

Example Program:

public class StringManipulation{

public static void main(String[] args) {

String s1 = "Hello";
String s2 = "World";
System.out.println("Original s1: " + s1); // Prints the original value of s1
System.out.println("Original s2: " + s2); // Prints the original value of s2
// String Concatenation using concat() method
String combinedString2 = s1.concat(" ").concat(s2);
System.out.println("Concatenation using concat(): " + combinedString?);
// String to Upper Case
String s1Upper = s1.toUpperCase(); // Converts s1 to uppercase
System.out.println("\ns1 in uppercase: " + s1Upper);
// String to Lower Case
String s2Lower = s2.toLowerCase(); // Converts s2 to lowercase
System.out.println("s2 in lowercase: " + s2Lower);
// String substring from a starting index
String subl = s1.substring(1); // Extracts a substring of s starting from index 1
System.out.println("\nSubstring of s1 from index 1: " + sub1);

// String substring from a starting index to an ending index

String sub2 = s2.substring(0, 3); // Extracts a substring of s2 from index 0 up to (but not
including) index 3

System.out.printIn("Substring of s2 from index 0 to 3: " + sub2);

OR

5. a) Describe the process of declaring and initializing class and objects in Java
with suitable example. L2 CO2 SM

class: A class is a group of objects which have common properties.It is a template or blueprint
from which objects are created. It is a logical entity. It can't be physical.

Declaration:

class <class_name>

{

fields(variables);

methods;

}

Initialization:

{n Java;, initialization of classes is generally done through objects, which are instances of the class.
ClassName objectName = new ClassName();

Object :

An entity that has state and behavior is known as an object. An Object in java essentially a block
of memory that contains a space to store all the instance Variables.
Declaration:

classname objectname;

Initializing:

objectname=new classname();

We can directly define as:
classname objectname=new classname();

Example Prgram:
class Student // Declaration of Student class

int id; // Declaration of id variable
String name; // Declaration of name variable

}

class Example // Declaration of Example class

{

public static void main(String args[])
{
Student s1 = new Student(); // Declaration and initialization of Student object
s1.id = 101; // Initialization of id variable
s1.name = "AAA"; // Initialization of name variable
System.out.println(s1.id + " " + sl.name); // Printing id and name

b) Construct a Java Program to differentiate passing arguments by value and by
Reference. L3 CO2 SM
class Test {

public int a;
public int b;
public Test(int a, int b) {
this.a = a;
this.b =b;
H
}

public class SwapExample {
// Method to swap primitive values (pass by value)
public static void swapl1(int a, int b) {

int temp = a;
a=b;
b = temp;

}
// Method to swap object values (pass by reference)

public static void swap2(Test t) {
int temp = t.a;
ta=tb;
t.b = temp;
}
public static void main(String[] args) {
int x = 10;
inty = 20;
System.out.printIn("Before Swapping using Pass by Value: x="+x+", y="+y);
// Pass by value
swapl(x, y);
System.out.printIn("After Swapping using Pass by Value: x ="+x+",y="+y);
Test t = new Test(30, 40);
System.out.println("Before Swapping using Pass by Reference: a="+ta+",b="+t.b);
// Pass by reference
swap2(t);
System.out.printIn("After Swapping using Pass by Reference:a="+ta+",b="+tb):

UNIT - 111

a) List and explain different operations that can be performed on Array

e eclements. L2 CO2 SM

e Traversing - Iterating through array elements to access or display their values.

e Inserting-To insert an eletaent at any index or at the end.

e Deleting- To delete an element at any index or at the end.

e Searching-To search for a specific element. It can be done using binarySearch()
method.

e Sorting-To sort an array. It can be done sort() using method.

e Comparing- To check whether two arrays are equal or not. We can perform this by using
equals() method.

e Converting array into a string-It can be achieved by using toString() method.

Example Program:

import java.util. Arrays;

import java.util.Scanner;

public class ArrayOperationsExample {

public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
System.out.printIn("Enter the size of the first array:");
int sizel = scanner.nextInt();
int[] numbers = new int[sizel];
System.out.println("Enter the elements of the first array:");
for (int i = 0; i <sizel; i++) {
numbers|i] = scanner.nextInt();

}
System.out.printIn("Enter the size of the second array:");
int size2 = scanner.nextInt();
int[] array2 = new int[size?];
System.out.println("Enter the elements of the second array:");
for (int i = 0; i < size2; i++) {

array2[i] = scanner.nextInt();

// Insertion at 2™ position a value 10

int value = 10, position = 2;

// Copy elements

for (inti=0, j = 0; i < array.length; i++)
{ if (i == position)

{

array2[i] = value;

}

else

{
Array2[i] = array2[j++];

}

// Deletion at 2" position

int position = 2;

for (int i = position; i < array2.length - 1; i++)

{ array2[i] = array2[i + 1];

}

/! Using for loop — Traversing

for (int i = 0; i < array2.length; i++)

{ System.out.println(array2[i]);

}
/I Arrays.sort()
Arrays.sort(numbers); // Sorting the first array
System.out.printIn("Sorted first array: " + Arrays.toString(numbers));
/I Arrays.binarySearch()
System.out.printIn("Enter a value to search in the sorted first array:");
int searchValue = scanner.nextInt();

int index = Arrays.binarySearch(numbers, searchValue); / Binary search for the user
input value

System.out.println("Index of " + searchValue + ": " + index);

/I Arrays.equals()

boolean areEqual = Arrays.equals(numbers, array2); // Check if arrays are equal

System.out.println("Are the first and second arrays equal? " + areEqual);

/| Arrays.fill(): Fills the second array with the specified value.
System.out.println("Enter a value to fill the second array:");
int fillValue = scanner.nextInt();
Arrays.fill(array2, fillValue); // Fill the second array with the specified value
System.out.println("Filled second array: " + Arrays.toString(array2));

/I Arrays.toString()

String arrayString = Arrays.toString(numbers); // Convert the first array to a string
representation

System.out.println("First array as string: " + arrayString);

scanner.close();

b) What is inheritance? Explain different types of inheritance techniques which
are supported by Java. L2 CO2 SM

Inheritance: Inheritance is a concept in object-oriented programming (OOP) where a class
(called a subclass or derived class) inherits the properties and behaviours (methods) from
another class (called a superclass or base class). This allows for the reuse of code, enabling
new classes to be built upon existing ones.

A Class that is Inherited(Old Class) is called a “Super Class” or “Base Class” or “Parent
Class™.

A Class that does the inheriting(New Class) is called a “Sub Class™ or “ Derived Class™ or
“Child Class”™.

In java only Three types of Inheritances supported .These are single, multi level,
hierarchical.

Single Inheritance: It is a type of inheritance in Java where a subclass (child class) inherits
the properties and behaviours (fields and methods) from a single superclass (parent class).
This allows the subclass to reuse, override, or extend the functionality of the superclass. And

establishes a relationship between different classes, making it easier to maintain and extend
code.

C ChsA

Syntax:

class Parent {

// Parent class code

}
class Child extends Parent {
// Child class code
}
Example:
N
Employee
salary : float
N éil ./
~
Programmer
bonus: int
N A

Multilevel Inheritance: It is a type of inheritance in Java where a class derives from a class that
is itself derived from another class. This creates a chain of inheritance, allowing properties and
behaviors to propagate through multiple levels of classes.

class

Derived
Class

Fig: Multilevel Inheritance

Syntax:

class GrandParent {
/! Grandparent class code

j

class Parent extends GrandParent {
// Parent class code

}

class Child extends Parent {
// Child class code

h

Example:

First derived
Class

Class Triangle | SetondDerved

Closs

Hierarchical Inheritance: This inheritance in Java is a type of inheritance where a single parent
class is extended by multiple child classes. Each child class inherits the properties and methods of
the parent class but can also define its own unique features.

In the below image, class A serves as a base class for the derived classes B, C, and D.

Syntax:

class A {
/I A class code

}

class B extends A {
// B class code

}

class C extends A {
// C class code

}

class D extends A {

/I D class code

Example:
| String cotor
[+double caiculateAreal)
jmmmmmu
o o mlms
¢ .
| Circle i Square
! +doubte radius lmmm

7. a) Explain the following

L2 CO2 5M

i) final keyword in inheritance

i) final keyword in inheritance:

The final keyword in java is used to restrict the user. The java final keyword can be used in many
context. final can be: 1. variable 2. method 3. class

The main purpose of using a class being declared as final is to prevent the class from being sub
classed. If a class is marked as final then no class can inherit any feature from the final class.

If you make any class as final, you :annot extend it, which means a class which is made final
cannot be inherited.

final class Bike{ }

class Honda extends Bike{

void run(){System.out.println("running safely with 100km ph");
}

public static void main(String args[]){

Honda honda= new Honda();

honda.run();

}
}

Note: the above program gives “Compile time error” Since class Bike is declared as final so the
derived class Honda cannot extend Bike

ii) Vector:

Vectors are another kind of data structure that is used for storing information. Using vector, we
can implement a dynamic array. Vectors are dynamically allocated.

The vector class is contained in java.util package. Vector stores pointers to the objects and not
objects themselves.

The following are the vector constructors.

Vector vec = new Vector(5); // size of vector is

Example Program:

import java.util. Vector;
public class VectorExample {
public static void main(String[] args) {
Vector<Integer> vector = new Vector<>();

// Add elements dynamically

vector.add(10);
vector.add(20);
vector.add(30);
!/ Access elements

System.out.printin("Element at index 1: " + vector.get(1));

b) Discuss the concepts of default and static methods in interface. L2 CO2 5M

In java, interfaces can contain default methods and static methods. Before Java 8, interfaces
could have only abstract methods. The implementation of these methods has to be provided in a
separate class. So, if a new method is to be added in an interfice, then its implementation code has
to be provided in the class implementing the same interface. To overcome this issue, Java 8 has
introduced the concept of default methods which allow the interfaces to have methods with
implementation without affecting the classes that implement the interface

Default Method:

A default method is defined inside an interface using the default keyword followed by the method
body. It is a concrete method, meaning it has a body unlike abstract methods which only have a
declaration.

Syntax: The default keyword is used before the method declaration in the interface.
Example: default void defaultMethod() ;
Static Method:

A static method in an interface is similar to static methods in classes. Static methods in interfaces
are not inherited by implementing classes, and they must be called on the interface itself rather
than on an object of the class implementing the interface.

A static method in an interface is defined with the static keyword. It can have a method body (like
any other static method) and is not inherited by classes that implement the interface.

Syntax: The static keyword is used to define the method in the interface.
Example: static void Staticmethod();
Example program:

interface Drawable {

void draw();
default void message() {
System.out.println("This is a Drawable shape.");
}
static void printInfo() {

System.out.println("Drawable interface provides drawing functionality.");

}

class Rectangle implements Drawable {
public void draw() {

System.out.println("drawing rectangle");

}

class Circle implements Drawable {
public void draw() {

System.out.printin("drawing circle");

}

class Test {
public static void main(String args[]) {

Drawable d = new Circle();// In real scenario, object is provided by method e.g.
getDrawable()

d.draw();

d.message(); // Calling default method
Drawable.printInfo(); // Calling static method
d = new Rectangle();

d.draw();

d.message();// Calling default method

UNIT -1V

8. a) How do different access control specifiers control access to class members
across different packages? Explain. L2 CO3 SM

In Java, access control specifiers (also known as access modifiers) control the visibility and
accessibility of class members (fields, methods, and inner classes) across different packages. Java
provides four access control specifiers: public, protected, default (package-private), and private.
These specifiers determine how accessible a class or its members are from other classes, including
those in different packages.

The access specifiers are public, private, protected and default

a) Public: The access level of a public modifier is everywhere. It can be accessed from
within the class, outside the class, within the package and outside the package.

Program:

//save by A.java

package pack;

public class A{

public void msg(){System.out.printIn("Hello");}
}

//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){
A obj = new A();

obj.msg();

}
}

Output:
Hello

b) Private: The access level of a private modifier is only within the class. It cannot be
accessed from outside the class. private members are not accessible from any other class,
whether it is in the same package or a different package.

Program:

Save A.java

package mypackage;

public class A {
private int data = 40; // Private field
private void msg() { // Private method

System.out.println("Hello java");

3

Save Simple.java

import mypackage.A; // Importing the class from 'mypackage’

public class Simple {

public static void main(String[] args) {

A obj = new A();
// Attempt to access private members
System.out.printIn(obj.data); // Compile Time Error

obj.msg(); /I Compile Time Error

}
Output:

Compile Time Error

¢) Protected: The access level of a protected modifier is within the package and outside the
package through child class. If we do not make the child class, it cannot be accessed from
outside the package.
In a different package, protected members can only be accessed if the class is a subelass
(either directly or indirectly) of the class that defines the protected member. Non-
subclasses in different packages cannot access protected members.

//save by A.java

package pack;

public class A{

protected void msg(){System.out.println("Hello"); }
}

//save by B.java

package mypack;

import pack.*;

class B extends A{

public static void main(String args[]){
B obj = new B();

obj.msg();

}

i

Output:

Hello

d) Default: The access level of a default modifier is only within the package. It cannot be
accessed from outside the package. If we do not specity any access level, it will be the
default.

Program:
//save by A.java
package pack;
class A{

void msg(){System.out.println("Hello");}

H
//save by B.java

package mypack;

import pack.*;

class B{

public static void main(String args[]){
A obj = new A();//Compile Time Error

obj.msg();//Compile Time Error

}

}
Output:

Compile Time Error

Private Y N N ' N

| z ;
Defauit | Y '? v N Pt N
Protected ? Y ¥ ; ¥ i N
Public - o . Y ; Y : Y

b) Differentiate between checked and unchecked exceptions. Give suitable
examples. L3 CO3 SM

An exception is an abnormal condition that arises in a code sequence at run time. Exception is
a run time error. Java and other programming languages have mechanisms for handling
exceptions that you can use to keep your program from crashing. In Java, this is known as
catching an exception/exception handling.

Hierarchy of Standard Exception Classes:

There are two types of exceptions in Java:

« Unchecked Exceptions * Checked Exceptions

Differences:

Aspect Jr

Checked Exceptions

L Bl

Unchecked Exceptions

Exceptions checked (notified) by

Exceptions that occur during runtime and are

Definition the compiler at compilation time. _|inot checked at compilation time.
Alternagiye Compile-Time Exceptions Runtime Exceptions
Name
Detection Detected by th.e cgmpller donng Detected only when the program is executed.
the code compilation process.
Most are caused by syntax errors . ‘
Error Type |[like missing semicolons, brackets, Typlc?llly caniged .by PRORE ing bugs, such
. e as logic errors or improper API usage.
or misspelled identifiers.
Compiler displays errors and stops |Program compiles successfully (bytecode is
Impact on : A
e generating the bytecode file until generated), but may crash or behave
Compilation . ;
the errors are resolved. unexpectedly during execution.
- ClassNotFoundException: - ArithmeticException: Arithmetic error, such
Class not found. as division by zero.
- IllegalAccessException: Access |- ArrayIndexOutOfBoundsException:
to a class is denied. Accessing an invalid index in an array.
Examples

- NoSuchMethodException: A
requested method does not exist.

- InterruptedException: A thread
is interrupted by another thread.

- NullPointerException: Invalid use of a null
reference.

- NumberFormatException: Invalid
conversion of a string to numeric format.

OR

9.

a) Explain the usage of try, catch, throw, throws and finally keywords in
exception handling. Give simple example. L2 CO3 5M

1. try block:

The statements that are produces exception are identified in the program and the statements are
placed with within a try block. If an Exception occurs with in the try block, the appropriate
exception handler(catch block) associated with try block handles the Exception Immediately.

2. catch block :

The catch block is used to process the Exception raised. The catch block is placed immediately
after the try block.

try{
/I Block of code to try

}

catch(Exception e) {

/" Block of code to handle errors
1

3. finally block :

The finally block follows a try block or a catch block.Using a finally block allows you to run
any cleanup-type statements that you want to execute, no matter what happens in the protected
code.

try {
// Code that might throw an exception
} catch (ExceptionTypel el) {
// Handling specific exception type 1
} catch (ExceptionType2 €2) {
// Handling specific exception type 2
} finally {
/I Code that will always execute, regardless of exception

}

4. throw statement:

It is also possible to create a program that throws an exception explicitly, using the “throw™
statement.

Syntax: throw new ExceptionType("Error message");
5. throws statement:

The Java throws keyword is used to declare an exception.It gives an information to the
programmer that there may occur an exception.so it is better for the programmer to provide the
exception handling code so that normal flow can be maintained.

Syntax: returnType methodName() throws ExceptionTypel, ExceptionType2 {
// Method implementation
}
Example Program:
class t {
public t() throws NullPointerException {
System.out.printIn("caught");

throw new NullPointerException("demo");

}
class th3 {

public static void main(String args[]) {
try {
t obj = new t();
} catch (NullPointerException ¢€) {
System.out.println("Recaught");
} finally {
System.out.println("Finally block executed");

}

System.out.println("rest of code");

public class SimpleExceptionExample {

// Method that may throw an exception
public static void divide(int a, int b) throws ArithmeticException {
if(b==0) {
throw new ArithmeticException("Cannot divide by zero");

}

System.out.println("Result: " + (a / b));
}
public static void main(String[] args) {
int num! = 10, num?2 = 0;
try {
/I Attempt to divide two numbers
divide(num1, num?2);
} catch (ArithmeticException e) {
// Catch the exception if it occurs
System.out.println("Caught exception: " + e.getMessage());
} finally {
// Finally block that always runs

System.out.println("This will always be executed, even if there's an exception.");

System.out.println("Program finished. ")

b) Tllustrate the difference between byte stream and character streams in Java.
Draw the stream hierarchies. L3 CO3 5sM

Aspect J[

Character Streams

I

Byte Streams

Specialized for handling text

a file.

Purpose data Used to process raw binary data.
(Unicode characters).
; Class‘es inbert frorr'l e Classes inherit from InputStream (for input) and
Inheritance|[(for input) and Writer (for
OutputStream (for output).
output).
|Common - FileReader - FileInputStream
Classes - FileWriter - FileOutputStream
Data Type |Deals with character data, Deals with byte data, handles raw binary data
Handled |jsupports Unicode. (e.g., images, audio).
. Automatically handles Does not handle character encoding, works with
Encoding ’ s
character encoding and decoding. [raw bytes.
Use Used for reading/writing text Used for reading/writing binary files, such as
Case files, such as .txt files. images, audio files.
- FileReader: Reads characters
Example |[from a file. - FileInputStream: Reads bytes from a file.
Usage - FileWriter: Writes characters to - FileOutputStream: Writes bytes to a file.

Stream Hierarchy:

java.io

i InputStream

L+ QutputStream

e Bvi:e Array InputStream

e File‘l.np.u‘ztéh-ean'-‘
M Dbiectinputﬁhﬂeam
— KFi'lh‘arInputSﬁam
it Pipad!ﬁpl;tswam
s Seq‘uencenn;limtstream
i Sﬁﬁgﬂuﬁerlnputswng
i pg@&wayﬂuﬁ:utﬁt@am
t— FileOutputStream
- FilterOutputStream
e ubjeci:ﬂutﬁutstmam
bz Pipedﬂutputsmegm

UNIT-V

10. a) Explain how thread priority is set and used in Java with example
program. L4 CO4 5M

When the threads are created and started, a “thread scheduler” program in JVM will load them
into memory and execute them. This scheduler will allot more JVM time to those thread which are
having priority. The priority numbers will change from 1 to 10.

Thread MAX_PRIORITY — 10
Thread MIN_PRIORITY - 1
Thread. NORM_PRIORITY — 5

Setting Thread Priority: You can set a thread's priority using the setPriority(int priority) method,
where the priority is an integer between 1 and 10

Program:
class MyThread extends Thread {
@Override
public void run() {
System.out.println(Thread.currentThread().getName() + " with priority: " +

getPriority());

H
public class ThreadPriorityExample {

public static void main(String[] args) {
MyThread thread1 = new MyThread();
MyThread thread2 = new MyThread();
MyThread thread3 = new MyThread();
// Setting priorities
thread1.setPriority(Thread. MAX_PRIORITY); // Hi ghest priority (10)

thread2.setPriority(Thread. NORM_PRIORITY); // Default priority (5)

thread3.setPriority(Thread. MIN_PRIORITY); // Lowest priority (1)
// Starting threads

thread1.start();

thread2.start();

thread3.start();

}

b) Illustrate the use of HashSet class in collection framework with an
example program. L3 CO4 5SM

Creating a HashSet: import java.util.HashSet;

HashSet numbers = new HashSet<>(8, 0.75);

The first parameter is capacity, and the second parameter is loadFactor.
Capacity - The capacity of this hash set is 8. Meaning, it can store 8 elements.

LoadFactor - The load factor of this hash set is 0.6. This means, whenever our hash set is filled by
60%, the elements are moved to a new hash table of double the size of the original hash table.

// HashSet with default capacity and load factor
HashSet numbers1 = new HashSet<>();
Uses of Hashset:

1.A HashSet is designed to store only unique elements. If you try to add a duplicate element, it
will not be added.

2. HashSet does not guarantee any specific order of the elements (no insertion order or sorted
order), it is useful when you don’t need to maintain order.

3.If you need to ensure that a set of data is processed only once (e.g., reading unique data), a
HashSet is ideal to avoid redundant operations.

Program:
import java.util.*;
public class SetExample {
public static void main(String[] args) {

// Create a HashSet to store unique strings

Set<String> set = new HashSet<>();

// Create a scanner object to take user input

Scanner scanner = new Scanner(System.in);

System.out.print("How many elements would you like to enter? ");

int numElements = scanner.nextInt();

scanner.nextLine(); // Consume the newline character

// Use a for loop to get a fixed number of inputs

fo‘r (inti = 0; i < numElements; i++) {
System.out.print("Enter element " + (i + 1) + ": ");
String input = scanner.nextLine();
// Add the input to the set (duplicates will be ignored)
set.add(input);

}

// Close the scanner

scanner.close();

// Output the final set of unique elements

System.out.println("Set contains: " + set);

OR

11. a) Analyze different procedures for creating a thread in Java. Explain any one
mechanism with example program. L4 CO4 5M

Ans:A Thread is a very light-weighted process, or we can say the smallest part of the
process that. allows a program to operate more efficiently by running multiple tasks
simultaneously.

We can create Threads in java using two ways, namely :

1. Extending Thread Class

2. Implementing 2 Runnable interface

By Extending Thread Class:

We can run Threads in Java by using Thread Class, which provides constructors and
methods for

creating and performing operations on a Thread, which extends a Thread class that can
implement

Runnable Interface. We use the following constructors for creating the Thread:
Thread

Thread(Runnable r)

Thread(String name)

Thread(Runnable r, String name)

*example:Sample code to create Threads by Extending Thread Class:

import java.io.*;

import java.util.*;

public class GFG extends Thread {

// initiated run method for Thread

public void run()

{

System.out.println("Thread Started Running...");
}

public static void main(String[] args)

{

GFG gl = new GFG();

// Invoking Thread using start() method

gl.start();

}

}
2.

*example:Sample code to create Thread by using Runnable Interface:

import java.io.*;

import java.util. *;

public class GFG implements Runnable {
// method to start Thread

public void run()

{

System.out.prinﬂn(

"Thread is Running Successfully");

)

public static void main(String[] args)
{

GFG gl = new GFG();

// initializing Thread Object

Thread t1 = new Thread(gl);

tl.start();

}
}

b) Define List and differentiate ArrayList, Linked List. L2 CO4 sM

List: An ordered collection that allows duplicates (e. g., ArrayList, LinkedList).

Eeature ArrayList

]tnkedLlst

|

Data Structure
elements.

Uses a dynamic array to store

Uses a doubly linked list (nodes wi
pointers).

ith

=

Implementation ([mplements the List interface.

jlmplements the List and Deque
interfaces.

Order N

Maintenance

3

Maintains insertion order.

Maintains insertion order.

L

Feature ArrayList LinkedList
Duplicates Allows duplicate elements. Allows duplicate elements.

Provides random access to elements Provides sequential access (linked T
Access Type v o F

using indices. node traversal).

Memory Usage

More memory-efficient because it
stores elements in contiguous memory
locations.

Uses more memory due to storage of
additional pointers (prev/next).

Resize Operation

ArrayList grows dynamically when the
array is full, but resizing can be costly.

No resizing required as it grows ot
shrinks by adding/removing nodes.

Use Cases

|

Ideal for scenarios where random
access to elements is needed.

Ideal for scenarios where frequent
insertions/deletions are needed.

Array List example program

import java.util.*;

class TestJavaCollection1{

public static void main(String args[]){
ArrayList<String> list=new
ArrayList<String>();//Creating arraylist
list.add("A");//Adding object in arraylist
list.add("B");

list.add("C");

list.add("A");

//Traversing list through Iterator
Iterator itr=list.iterator();
while(itr.hasNext()){

System.out.printin(itr.next()); }
}
}

Linked list example program:

import java.util. *;

class TestlavaCollection? {

public static void main(String args[]) {

// Creating LinkedList
LinkedList<Sm'ng> list = new LinkedList<Str1'ng>();
// Adding objects to LinkedList
list.add("A");
list.add("B");
list.add("C");
list.add("A");
/I Traversing list through Iterator
Iterator<String> itr = list.iterator();
while (itr.hasNext()) {

System.out.println(itr.next());

