Code: 23CE3303

II B.Tech - I Semester - Regular Examinations - DECEMBER 2024

FLUID MECHANICS (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

CO – Course Outcome

PART - A

		BL	CO
1.a)	Define capillarity.	L1	CO1
1.b)	State the Newton's law of viscosity.	L1	CO1
1.c)	Classify the pressures and relate them.	L2	CO2
1.d)	State the principle of diaphragm pressure gauge	L2	CO2
	and its use.		
1.e)	what is an ideal fluid.	L1	CO3
1.f)	Differentiate steady and unsteady flows.	L2	CO3
1.g)	Mention different forces acting on a body.	L1	CO4
1.h)	What is venture meter?	L1	CO4
1.i)	What is Total energy line?	L2	CO5
1.j)	What is hydraulic gradient line?	L2	CO5

PART - B

			BL	СО	Max. Marks	
UNIT-I						
2	a)	How the viscosity of fluids changes with	L2	CO1	5 M	
		temperature? Explain.				

	b)	Find the force and power required to lift	L3	CO1	5 M	
		the plate with a constant velocity of				
		10cm/s for a plate 1.5m X 1.5m and 2mm				
		thick weighing 50N is to be lifted through				
		a gap of 2cm filled with an oil whose				
		$\mu = 25$ poise and specific gravity = 0.9.				
		OR				
3	a)	Define density, specific weight, and	L2	CO1	5 M	
		specific gravity, and explain their				
		interrelationships.				
	b)	Find the mass density of the liquid if the	L3	CO1	5 M	
		difference in two menisci is 2mm for a				
		U-tube is made up of two capillaries of				
		bores 1.5mm and 2mm respectively. The				
		tube is held vertical and partially filled				
		with liquid whose $\sigma = 0.075$ N/m. Assume				
		the angle of contact is zero.				
		UNIT-II				
4	a)	What is U-tube manometer? Derive an	L3	CO2	5 M	
		expression for pressure measurement.				
	b)	Determine the total pressure on a circular	L3	CO2	5 M	
		plate of diameter 1.5m which is placed				
		vertically in water in such a way that the				
		center of the plate is 3m below the free				
		surface of water. Find the position of				
		center of pressure also.				
OR						
5	a)	Compare U-tube differential manometer	L2	CO2	5 M	
		and inverted U-tube differential				
		manometer and their uses.				
	b)	Find the differential reading of manometer	L3	CO2	5 M	
		of an inverted U-tube manometer using oil				
		of 0.8 specific gravity as manometric fluid				
		is connected to the pipes A and B carrying				
		the liquids of specific gravities of 1.2 and				
	1	1 1 0				

		1 respectively. The pines A and D are at					
		1 respectively. The pipes A and B are at					
		same level. The height of the liquid of oil					
		of 1.2 specific gravity from the centre of					
		the pipe is 40cm. Assume all liquids are					
		immiscible and pressure in pipe B is					
		2000Pa above the pressure in pipe A.					
	UNIT-III						
6	a)	Explain the equation of continuity and	L3	CO3	5 M		
		obtain an expression for continuity					
	1 \	equation for three dimensional flow.	T 0	000	5 N 6		
	b)	Explain about following	L2	CO3	5 M		
		i) Stream line and Path line.					
		ii) Uniform flow and Non-Uniform flow.					
		iii) Compressible and incompressible flow.					
	I .	OR	T 0	000			
7	a)	Explain stream function and velocity	L2	CO ₃	5 M		
	1 \	potential function.	T 0	000			
	b)	Explain one, two, and three dimensional	L2	CO3	5 M		
		flow with neat sketches.					
	Ι.	UNIT-IV	- <u>-</u>	1 1			
8	a)	Compare the relative merits and demerits	L2	CO4	5 M		
		of venturimeter with respect to orifice					
		meter.					
	b)	A pitot tube is placed in the center of a	L3	CO4	5 M		
		30cm pipe line has an orifice pointing					
		upstream and other perpendicular to it. The					
		mean velocity in the pipe is 0.8 of central					
		velocity. Find the discharge through the					
		pipe if the pressure difference between two					
		pipes is 60mm of water. Take coefficient					
		of pitot tube as 0.98.					
OR							
9	a)	Explain the principle of venturimeter with	L3	CO4	5 M		
		a neat sketch. Derive the expression for					
		rate of flow of fluid through it.					

	b)	What is Euler's equation? How will you	L3	CO4	5 M		
		obtain Bernoulli's equation from it.					
	UNIT-V						
10	a)	What are the minor losses in pipes? Give	L2	CO5	5 M		
		the appropriate formulae to calculate the					
		losses.					
	b)	Determine the difference in elevation	L4	CO5	5 M		
		between the water surfaces in the two					
		tanks which are connected by a horizontal					
		pipe of diameter 30cm and length of					
		400m. The rate of flow of water through					
		the pipe is 300lt/s. Neglect the minor					
		losses and $f = 0.008$.					
		OR		Т Т			
11	a)	Derive an expression for flow over a	L3	CO5	5 M		
		rectangle notch.					
	b)	Three pipes are of 30cm, 20cm, 40cm	L4	CO5	5 M		
		diameters have lengths of 300m, 170m					
		210m respectively. They are connected in					
		series. The ends of the pipes are connected					
		with two tanks whose difference in water					
		levels is 12m. Determine the rate of flow					
		of water if the coefficient of friction are					
		0.005, 0.0052, 0.0048 respectively.					