
Requirements 1

Software Requirements
Analysis and Specification

 UNIT-3

Requirements 2

Background

 Problem of scale is a key issue for SE

 For small scale, understand and specifying
requirements is easy

 For large problem - very hard; probably the
hardest, most problematic and error prone

 Input : user needs in minds of people

 Output : precise statement of what the future
system will do

Requirements 3

Background..

 Identifying and specifying req necessarily
involves people interaction

 Cannot be automated

 Requirement (IEEE)= A condition or capability
that must be possessed by a system

 Req. phase ends with a software requirements
specification (SRS) document

 SRS specifies what the proposed system
should do

Requirements 4

Background..

 Requirements understanding is hard

 Visualizing a future system is difficult

 Capability of the future system not clear, hence
needs not clear

 Requirements change with time

 …

 Essential to do a proper analysis and
specification of requirements

Requirements 5

Need for SRS

 SRS establishes basis of agreement
between the user and the supplier.

 Users needs have to be satisfied, but user
may not understand software

 Developers will develop the system, but
may not know about problem domain

 SRS is the medium to bridge the commn.
gap and specify user needs in a manner
both can understand

Requirements 6

Need for SRS…

 Helps user understand his needs.

 users do not always know their needs

 must analyze and understand the potential

 the goal is not just to automate a manual system,
but also to add value through IT

 The req process helps clarify needs

 SRS provides a reference for validation of the
final product

 Clear understanding about what is expected.

 Validation - “ SW satisfies the SRS “

Requirements 7

Need for SRS…

 High quality SRS essential for high Quality SW

 Requirement errors get manifested in final sw

 to satisfy the quality objective, must begin with
high quality SRS

 Requirements defects are not few

 25% of all defects in one case; 54% of all defects found
after UT

 80 defects in A7 that resulted in change requests

 500 / 250 defects in previously approved SRS.

Requirements 8

Need for SRS…

 Good SRS reduces the development cost
 SRS errors are expensive to fix later

 Req. changes can cost a lot (up to 40%)

 Good SRS can minimize changes and errors

 Substantial savings; extra effort spent
during req. saves multiple times that effort

 An Example
 Cost of fixing errors in req. , design ,

coding , acceptance testing and operation
are 2 , 5 , 15 , 50 , 150 person-months

Requirements 9

Need for SRS…

 Example …

 After req. phase 65% req errs detected in design ,
2% in coding, 30% in Acceptance testing, 3%
during operation

 If 50 requirement errors are not removed in the
req. phase, the total cost
32.5 *5 + 1*15 + 15*50 + 1.5*150 = 1152 hrs

 If 100 person-hours invested additionally in req to
catch these 50 defects , then development cost
could be reduced by 1152 person-hours.

 Net reduction in cost is 1052 person-hours

Requirements 10

Requirements Process

 Sequence of steps that need to be performed
to convert user needs into SRS

 Process has to elicit needs and requirements
and clearly specifies it

 Basic activities

 problem or requirement analysis

 requirement specification

 validation

 Analysis involves elicitation and is the hardest

Requirements 11

Requirements Process..

needs

Analysis

Specification

Validation

Requirements 12

Requirement process..

 Process is not linear, it is iterative and
parallel

 Overlap between phases - some parts
may be analyzed and specified

 Specification itself may help analysis

 Validation can show gaps that can lead
to further analysis and spec

Requirements 13

Requirements Process…

 Focus of analysis is on understanding the
desired systems and it’s requirements

 Divide and conquer is the basic strategy

 decompose into small parts, understand each part
and relation between parts

 Large volumes of information is generated

 organizing them is a key

 Techniques like data flow diagrams, object
diagrams etc. used in the analysis

Requirements 14

Requirements Process..

 Transition from analysis to specs is hard
 in specs, external behavior specified

 during analysis, structure and domain are
understood

 analysis structures helps in specification,
but the transition is not final

 methods of analysis are similar to that of
design, but objective and scope different

 analysis deals with the problem domain,
whereas design deals with solution domain

Requirements 15

Problem Analysis

 Aim: to gain an understanding of the needs,
requirements, and constraints on the software

 Analysis involves

 interviewing client and users

 reading manuals

 studying current systems

 helping client/users understand new possibilities

 Like becoming a consultant

 Must understand the working of the
organization , client and users

Requirements 16

Problem Analysis…

 Some issues

 Obtaining the necessary information

 Brainstorming: interacting with clients to
establish desired properties

 Information organization, as large amount
of info. gets collected

 Ensuring completeness

 Ensuring consistency

 Avoiding internal design

Requirements 17

Problem Analysis…

 Interpersonal issues are important

 Communication skills are very important

 Basic principle: problem partition

 Partition w.r.t what?

 Object - OO analysis

 Function - structural analysis

 Events in the system – event partitioning

 Projection - get different views

 Will discuss few different analysis techniques

Requirements 18

Characteristics of an SRS

 What should be the characteristics of a good
SRS? Some key ones are

 Complete

 Unambiguous

 Consistent

 Verifiable

 Ranked for importance and/or stability

Requirements 19

Characteristics…

 Correctness
 Each requirement accurately represents some

desired feature in the final system

 Completeness
 All desired features/characteristics specified

 Hardest to satisfy

 Completeness and correctness strongly related

 Unambiguous
 Each req has exactly one meaning

 Without this errors will creep in

 Important as natural languages often used

Requirements 20

Characteristics…

 Verifiability

 There must exist a cost effective way of checking
if sw satisfies requirements

 Consistent

 two requirements don’t contradict each other

 Ranked for importance/stability

 Needed for prioritizing in construction

 To reduce risks due to changing requirements

Requirements 21

Components of an SRS

 What should an SRS contain ?

 Clarifying this will help ensure
completeness

 An SRS must specify requirements on

 Functionality

 Performance

 Design constraints

 External interfaces

Requirements 22

Functional Requirements

 Heart of the SRS document; this forms the
bulk of the specs

 Specifies all the functionality that the system
should support

 Outputs for the given inputs and the
relationship between them

 All operations the system is to do

 Must specify behavior for invalid inputs too

Requirements 23

Performance Requirements

 All the performance constraints on the
software system

 Generally on response time ,
throughput etc => dynamic

 Capacity requirements => static

 Must be in measurable terms
(verifiability)
 Eg resp time should be xx 90% of the time

Requirements 24

Design Constraints

 Factors in the client environment that
restrict the choices

 Some such restrictions
 Standard compliance and compatibility with

other systems

 Hardware Limitations

 Reliability, fault tolerance, backup req.

 Security

Requirements 25

External Interface

 All interactions of the software with
people, hardware, and sw

 User interface most important

 General requirements of “friendliness”
should be avoided

 These should also be verifiable

Requirements 26

Specification Language

 Language should support desired char
of the SRS

 Formal languages are precise and
unambiguous but hard

 Natural languages mostly used, with
some structure for the document

 Formal languages used for special
features or in highly critical systems

Requirements 27

Structure of an SRS

 Introduction

 Purpose , the basic objective of the system

 Scope of what the system is to do , not to do

 Overview

 Overall description

 Product perspective

 Product functions

 User characteristics

 Assumptions

 Constraints

Requirements 28

Structure of an SRS…

 Specific requirements

 External interfaces

 Functional requirements

 Performance requirements

 Design constraints

 Acceptable criteria

 desirable to specify this up front.

 This standardization of the SRS was done by
IEEE.

Requirements 29

Use Cases Approach for
Functional Requirements

 Traditional approach for fn specs – specify
each function

 Use cases is a newer technique for specifying
behavior (functionality)

 I.e. focuses on functional specs only

 Though primarily for specification, can be
used in analysis and elicitation

 Can be used to specify business or org
behavior also, though we will focus on sw

 Well suited for interactive systems

Requirements 30

Use Cases Basics

 A use case captures a contract between
a user and system about behavior

 Basically a textual form; diagrams are
mostly to support

 Also useful in requirements elicitation as
users like and understand the story
telling form and react to it easily

Requirements 31

Basics..

 Actor: a person or a system that interacts with the
proposed system to achieve a goal
 Eg. User of an ATM (goal: get money); data entry operator;

(goal: Perform transaction)

 Actor is a logical entity, so receiver and sender actors
are different (even if the same person)

 Actors can be people or systems

 Primary actor: The main actor who initiates a UC
 UC is to satisfy his goals

 The actual execution may be done by a system or another
person on behalf of the Primary actor

Requirements 32

Basics..

 Scenario: a set of actions performed to
achieve a goal under some conditions

 Actions specified as a sequence of steps

 A step is a logically complete action performed
either by the actor or the system

 Main success scenario – when things go
normally and the goal is achieved

 Alternate scenarios: When things go wrong
and goals cannot be achieved

Requirements 33

Basics..

 A UC is a collection of many such
scenarios

 A scenario may employ other use cases
in a step

 I.e. a sub-goal of a UC goal may be
performed by another UC

 I.e. UCs can be organized hierarchically

Requirements 34

Basics…

 UCs specify functionality by describing
interactions between actors and system

 Focuses on external behavior
 UCs are primarily textual

 UC diagrams show UCs, actors, and dependencies
 They provide an overview

 Story like description easy to understand by
both users and analysts

 They do not form the complete SRS, only the
functionality part

Requirements 35

Example

Use Case 1: Buy stocks

Primary Actor: Purchaser

Goals of Stakeholders:

 Purchaser: wants to buy stocks

 Company: wants full transaction info

Precondition: User already has an account

Requirements 36

Example …

 Main Success Scenario

1. User selects to buy stocks

2. System gets name of web site from user for
trading

3. Establishes connection

4. User browses and buys stocks

5. System intercepts responses from the site and
updates user portfolio

6. System shows user new portfolio stading

Requirements 37

Example…

 Alternatives
 2a: System gives err msg, asks for new

suggestion for site, gives option to cancel

 3a: Web failure. 1-Sys reports failure to
user, backs up to previous step. 2-User
exits or tries again

 4a: Computer crashes

 4b: web site does not ack purchase

 5a: web site does not return needed info

Requirements 38

Example 2

 Use Case 2: Buy a product

 Primary actor: buyer/customer

 Goal: purchase some product

 Precondition: Customer is already
logged in

Requirements 39

Example 2…

 Main Scenario

1. Customer browses and selects items

2. Customer goes to checkout

3. Customer fills shipping options

4. System presents full pricing info

5. Customer fills credit card info

6. System authorizes purchase

7. System confirms sale

8. System sends confirming email

Requirements 40

Example 2…

 Alternatives

 6a: Credit card authorization fails

 Allows customer to reenter info

 3a: Regular customer

 System displays last 4 digits of credit card no

 Asks customer to OK it or change it

 Moves to step 6

Requirements 41

Example – An auction site

 Use Case1: Put an item for auction
 Primary Actor: Seller
 Precondition: Seller has logged in
 Main Success Scenario:

 Seller posts an item (its category, description, picture,
etc.) for auction

 System shows past prices of similar items to seller
 System specifies the starting bid price and a date when

auction will close
 System accepts the item and posts it

 Exception Scenarios:
 -- 2 a) There are no past items of this category
 * System tells the seller this situation

Requirements 42

Example – auction site..

 Use Case2: Make a bid

 Primary Actor: Buyer

 Precondition: The buyer has logged in

 Main Success Scenario:
 Buyer searches or browses and selects some item

 System shows the rating of the seller, the starting bid, the
current bids, and the highest bid; asks buyer to make a bid

 Buyer specifies bid price, max bid price, and increment

 Systems accepts the bid; Blocks funds in bidders account

 System updates the bid price of other bidders where needed,
and updates the records for the item

Requirements 43

 Exception Scenarios:

 -- 3 a) The bid price is lower than the current
highest

 * System informs the bidder and asks to rebid

 -- 4 a) The bidder does not have enough funds in
his account

 * System cancels the bid, asks the user to get
more funds

Requirements 44

Example –auction site..

 Use Case3: Complete auction of an item

 Primary Actor: Auction System

 Precondition: The last date for bidding has been
reached

 Main Success Scenario:
 Select highest bidder; send email to selected bidder and seller

informing final bid price; send email to other bidders also

 Debit bidder’s account and credit seller’s account
 Transfer from seller’s account commission amount to

organization’s account
 Unblock other bidders funds

 Remove item from the site; update records

 Exception Scenarios: None

Requirements 45

Example – summary-level Use Case

 Use Case 0 : Auction an item

 Primary Actor: Auction system

 Scope: Auction conducting organization

 Precondition: None

 Main Success Scenario:
 Seller performs put an item for auction

 Various bidders make a bid

 On final date perform Complete the auction of
the item

 Get feed back from seller; get feedback from
buyer; update records

Requirements 46

Requirements with Use Cases

 UCs specify functional requirements

 Other req identified separately

 A complete SRS will contain the use
cases plus the other requirements

 Note – for system requirements it is
important to identify UCs for which the
system itself may be the actor

Requirements 47

Developing Use Cases

 UCs form a good medium for
brainstorming and discussions

 Hence can be used in elicitation and
problem analysis also

 UCs can be developed in a stepwise
refinement manner
 Many levels possible, but four naturally

emerge

Requirements 48

Developing…

 Step 1: Identify actors and goals
 Prepare an actor-goal list
 Provide a brief overview of the UC
 This defines the scope of the system
 Completeness can also be evaluated

 Step 2: Specify main Success Scenarios
 For each UC, expand main scenario
 This will provide the normal behavior of the

system
 Can be reviewed to ensure that interests of all

stakeholders and actors is met

Requirements 49

Developing…

 Step 3: Identify failure conditions

 List possible failure conditions for UCs

 For each step, identify how it may fail

 This step uncovers special situations

 Step 4: Specify failure handling

 Perhaps the hardest part

 Specify system behavior for the failure conditions

 New business rules and actors may emerge

Requirements 50

Other Approaches to Analysis

Requirements 51

Data Flow Modeling

 Widely used; focuses on functions
performed in the system

 Views a system as a network of data
transforms through which the data flows

 Uses data flow diagrams (DFDs) and
functional decomposition in modeling

 The SSAD methodology uses DFD to
organize information, and guide analysis

Requirements 52

Data flow diagrams

 A DFD shows flow of data through the
system

 Views system as transforming inputs to
outputs

 Transformation done through transforms

 DFD captures how transformation occurs
from input to output as data moves
through the transforms

 Not limited to software

Requirements 53

Data flow diagrams…

 DFD

 Transforms represented by named
circles/bubbles

 Bubbles connected by arrows on which
named data travels

 A rectangle represents a source or sink and
is originator/consumer of data (often
outside the system)

Requirements 54

DFD Example

Requirements 55

DFD Conventions

 External files shown as labeled straight lines

 Need for multiple data flows by a process
represented by * (means and)

 OR relationship represented by +

 All processes and arrows should be named

 Processes should represent transforms,
arrows should represent some data

Requirements 56

Data flow diagrams…

 Focus on what transforms happen , how
they are done is not important

 Usually major inputs/outputs shown,
minor are ignored in this modeling

 No loops , conditional thinking , …

 DFD is NOT a control chart, no
algorithmic design/thinking

 Sink/Source , external files

Requirements 57

Drawing a DFD

 If get stuck , reverse direction

 If control logic comes in , stop and restart
 Label each arrows and bubbles
 Make use of + & *
 Try drawing alternate DFDs
 Leveled DFDs :
 DFD of a system may be very large
 Can organize it hierarchically
 Start with a top level DFD with a few bubbles
 then draw DFD for each bubble
 Preserve I/O when “ exploding”

Requirements 58

Drawing a DFD for a system

 Identify inputs, outputs, sources, sinks for the
system

 Work your way consistently from inputs to
outputs, and identify a few high-level
transforms to capture full transformation

 If get stuck, reverse direction

 When high-level transforms defined, then
refine each transform with more detailed
transformations

Requirements 59

Drawing a DFD for a system..

 Never show control logic; if thinking in
terms of loops/decisions, stop & restart

 Label each arrows and bubbles;
carefully identify inputs and outputs of
each transform

 Make use of + & *

 Try drawing alternate DFDs

Requirements 60

Leveled DFDs

 DFD of a system may be very large

 Can organize it hierarchically

 Start with a top level DFD with a few bubbles

 then draw DFD for each bubble

 Preserve I/O when “ exploding” a bubble so
consistency preserved

 Makes drawing the leveled DFD a top-down
refinement process, and allows modeling of
large and complex systems

Requirements 61

Data Dictionary

 In a DFD arrows are labeled with data items

 Data dictionary defines data flows in a DFD

 Shows structure of data; structure becomes
more visible when exploding

 Can use regular expressions to express the
structure of data

Requirements 62

Data Dictionary Example

 For the timesheet DFD

Weekly_timesheet – employee_name + id +
[regular_hrs + overtime_hrs]*

Pay_rate = [hourly | daily | weekly] +
dollar_amt

Employee_name = last + first + middle

Id = digit + digit + digit + digit

Requirements 63

DFD drawing – common errors

 Unlabeled data flows

 Missing data flows

 Extraneous data flows

 Consistency not maintained during
refinement

 Missing processes

 Too detailed or too abstract

 Contains some control information

Requirements 64

Prototyping

 Prototyping is another approach for
problem analysis

 Discussed it earlier with process – leads
to prototyping process model

Requirements 65

Requirements Validation

 Lot of room for misunderstanding

 Errors possible

 Expensive to fix req defects later

 Must try to remove most errors in SRS

 Most common errors

 Omission - 30%

 Inconsistency - 10-30%

 Incorrect fact - 10-30%

 Ambiguity - 5 -20%

Requirements 66

Requirements Review

 SRS reviewed by a group of people

 Group: author, client, user, dev team rep.

 Must include client and a user

 Process – standard inspection process

 Effectiveness - can catch 40-80% of req.
errors

Requirements 67

Summary

 Having a good quality SRS is essential for Q&P

 The req. phase has 3 major sub phases

 analysis , specification and validation

 Analysis

 for problem understanding and modeling

 Methods used: SSAD, OOA , Prototyping

 Key properties of an SRS: correctness,
completeness, consistency,unambiguousness

Requirements 68

Summary..

 Specification

 must contain functionality , performance ,
interfaces and design constraints

 Mostly natural languages used

 Use Cases is a method to specify the
functionality; also useful for analysis

 Validation - through reviews

Software Architecture 69

Software Architecture

Software Architecture 70

Background

 Any complex system is composed of
sub-systems that interact

 While designing systems, an approach
is to identify sub-systems and how they
interact with each other

 Sw Arch tries to do this for software

 A recent area, but a lot of interest in it

Software Architecture 71

Background…

 Architecture is the system design at the
highest level

 Choices about technologies, products to use,
servers, etc are made at arch level

 Not possible to design system details and then
accommodate these choices

 Arch must be created accommodating them

 Is the earliest place when properties like
rel/perf can be evaluated

Software Architecture 72

Architecture

 Arch is a design of the sw that gives a very
high level view of parts and they relate to
form the whole
 Partitions the sys in parts such that each part can

be comprehended independently

 And describes relationship between parts

 A complex system can be partitioned in many
diff ways, each providing a useful view
 Same holds true of software also

 There is no unique structure; many possible

Software Architecture 73

Architecture

 Defn: Software arch is the structure or
structures which comprise elements, their
externally visible properties, and relationships
among them
 For elements only interested in external properties

needed for relationship specification
 Details on how the properties are supported is not

important for arch
 The defn does not say anything about whether an

arch is good or not – analysis needed for it

 An arch description describes the different
structures of the system

Software Architecture 74

Key Uses of Arch Descriptions

 Understanding and communication
 By showing a system at a high level and

hiding complexity of parts, arch descr
facilitates communication

 To get a common understanding between
the diff stakeholders (users, clients,
architect, designer,…)

 For negotiation and agreement

 Arch descr can also aid in understanding of
existing systems

Software Architecture 75

Uses…

 Reuse

 A method of reuse is to compose systems from
parts and reuse existing parts

 This model is facilitated by reusing components at
a high level providing complete services

 To reuse existing components, arch must be
chosen such that these components fit together
with other components

 Hence, decision about using existing components
is made at arch design time

Software Architecture 76

Uses..

 Construction and evolution
 Some structures in arch descr will be used to

guide system development

 Partitioning at arch level can also be used for work
allocation to teams as parts are relatively
independent

 During sw evolution, arch helps decide what
needs to be changed to incorporate the new
changes/features

 Arch can help decide what is the impact of
changes to existing components on others

Software Architecture 77

Uses…

 Analysis
 If properties like perf, reliability can be determined

from design, alternatives can be considered during
design to reach the desired perf levels

 Sw arch opens such possibilities for software
(other engg disciplines usually can do this)

 E.g. rel and perf of a system can be predicted
from its arch, if estimates for parms like load etc is
provided

 Will require precise description of arch, as well as
properties of the elements in the description

Software Architecture 78

Architectural Views

 There is no unique arch of a sys

 There are different views of a sw sys

 A view consists of elements and relationships
between them, and describes a structure

 The elements of a view depends on what the
view wants to highlight

 Diff views expose diff properties

 A view focusing on some aspects reduces its
complexity

Software Architecture 79

Views…

 Many types of views have been proposed

 Most belong to one of these three types

 Module

 Component and Connector

 Allocation

 The diff views are not unrelated – they all
represent the same system

 There are relationships between elements of diff
views; this rel may be complex

Software Architecture 80

Views…

 Module view

 A sys is a collection of code units i.e. they
do not represent runtime entitites

 I.e. elements are modules, eg. Class,
package, function, procedure,…

 Relationship between them is code based,
e.g. part of, depends on, calls,
generalization-specialization,..

Software Architecture 81

Views…

 Component and Connector (C&C)
 Elements are run time entities called

components

 I.e. a component is a unit that has identity
in executing sys, e.g. objects, processes,
.exe, .dll

 Connectors provide means of interaction
between components, e.g. pipes, shared
memory, sockets

Software Architecture 82

Views…

 Allocation view

 Focuses on how sw units are allocated to
resources like hw, file system, people

 I.e. specifies relationship between sw
elements and execution units in the env

 Expose structural properties like which
process runs on which processor, which file
resides where, …

Software Architecture 83

Views…

 An arch description consists of views of diff
types, each showing a diff structure
 Diff sys need diff types of views depending on the

needs
 E.g. for perf analysis, allocation view is necessary;

for planning, module view helps

 The C&C view is almost always done, and has
become the primary view
 We focus primarily on the C&C view
 Module view is covered in high level design,

whose focus is on identifying modules

Software Architecture 84

Component and Connector View

 Two main elements – components and connectors

 Components: Computational elements or data stores

 Connectors: Means of interaction between comps

 A C&C view defines the comps, and which comps are
connected through which connector

 The C&C view describes a runtime structure of the
system – what comps exist at runtime and how they
interact during execution

 Is a graph; often shown as a box-and-line drawing

 Most commonly used structure

Software Architecture 85

Components

 Units of computations or data stores

 Has a name, which represents its role, and
provides it identity

 A comp may have a type; diff types rep by
diff symbols in C&C view

 Comps use ports (or interfaces) to
communicate with others

 An arch can use any symbols to rep
components; some common ones are shown

Software Architecture 86

Some Component examples…

Software Architecture 87

Connectors

 Interaction between components happen
through connectors

 A connector may be provided by the runtime
environment, e.g. procedure call

 But there may be complex mechanisms for
interaction, e.g http, tcp/ip, ports,…; a lot of
sw needed to support them

 Important to identify them explicitly; also
needed for programming comps properly

Software Architecture 88

Connectors…

 Connectors need not be binary, e.g. a
broadcast bus

 Connector has a name (and a type)

 Often connectors represented as protocol –
i.e. comps need to follow some conventions
when using the connector

 Best to use diff notation for diff types of
connectors; all connectors should not be
shown by simple lines

Software Architecture 89

Connector examples

Software Architecture 90

An Example

 Design a system for taking online survey of
students on campus
 Multiple choice questions, students submit online

 When a student submits, current result of the
survey is shown

 Is best built using web; a 3-tier architecture
is proposed
 Has a client, server, and a database components

(each of a diff type)

 Connector between them are also of diff types

Software Architecture 91

Example…

Software Architecture 92

Example…

 At arch level, details are not needed

 The connectors are explicitly stated,
which implies that the infrastructure
should provide http, browser, etc.

 The choice of connectors imposes
constraints on how the components are
finally designed and built

Software Architecture 93

Extension 1

 This arch has no security – anyone can
take the survey

 We want that only registered students
can take the survey (at most once)
 To identify students and check for one-only

submission, need a authentication server

 Need to use cookies, and server has to be
built accordingly (the connector between
server and auth server is http with cookies)

Software Architecture 94

Extension 1…

Software Architecture 95

Extension 2

 It was found that DB is frequently down

 For improving reliability, want that if DB
is down, student is given an older
survey result and survey data stored

 The survey data given can be outdated
by at most 5 survey data points

 For this, will add a cache comp, which
will store data as well as results

Software Architecture 96

Extension 2…

Software Architecture 97

Example…

 One change increased security, 2nd
increased performance and reliability

 I.e. Arch level choices have a big
impact on system properties

 That is why, choosing a suitable arch
can help build a good system

Software Architecture 98

Architectural Styles for C&C View

 Diff systems have diff C&C structure

 Some structures are general and are useful
for a class of problems – architectural styles

 An arch style defines a family of archs that
satisfy the constraint of that style

 Styles can provide ideas for creating arch for
a sys; they can be combined also

 We discuss a few common styles

Software Architecture 99

Pipe and filter

 Well suited for systems that mainly do data
transformations

 A system using this style uses a network of
transforms to achieve the desired result

 Has one component type – filter

 Has one connector type – pipe

 A filter does some transformation and passes
data to other filters through pipes

Software Architecture 100

Pipe and Filter…

 A filter is independent; need not know the id
of filters sending/receiving data

 Filters can be asynchronous and are
producers or consumers of data

 A pipe is unidirectional channel which moves
streams of data from one filter to another

 A pipe is a 2-way connector

 Pipes have to perform buffering, and
synchronization between filters

Software Architecture 101

Pipe and filter…

 Pipes should work without knowing the
identify of producers/consumers

 A pipe must connect the output port of
one filter to input port of another

 Filters may have indep thread of control

Software Architecture 102

Example

 A system needed to count the
frequency of different words in a file

 One approach: first split the file into a
sequence of words, sort them, then
count the #of occurrences

 The arch of this system can naturally
use the pipe and filter style

Software Architecture 103

Example..

Software Architecture 104

Shared-data style

 Two component types – data repository and
data accessor

 Data repository – provides reliable permanent
storage

 Data accessors – access data in repositories,
perform computations, and may put the
results back also

 Communication between data accessors is
only through the repository

Software Architecture 105

Shared-data style…

 Two variations possible

 Black board style: if data is posted in a
repository, all accessors are informed; i.e.
shared data source is an active agent

 Repository style: passive repository

 Eg. database oriented systems; web
systems; programming environments,..

Software Architecture 106

Example

 A student registration system of a
university

 Repository contains all the data about
students, courses, schedules,…

 Accessors like admin, approvals,
registration, reports which perform
operations on the data

Software Architecture 107

Example…

Software Architecture 108

Example..

 Components do not directly
communicate with each other

 Easy to extend – if a scheduler is
needed, it is added as a new accessor
 No existing component needs to be

changed

 Only one connector style in this –
read/write

Software Architecture 109

Client-Server Style

 Two component types – clients and servers

 Clients can only communicate with the server,
but not with other clients

 Communication is initiated by a client which
sends request and server responds

 One connector type – request/reply, which is
asymmetric

 Often the client and the servers reside on
different machines

Software Architecture 110

Client-server style…

 A general form of this style is the n-tier
structure

 A 3-tier structure is commonly used by
many application and web systems

 Client-tier contains the clients

 Middle-tier contains the business rules

 Database tier has the information

Software Architecture 111

Some other styles

 Publish-subscribe style
 Some components generate events, and others

subscribe to them
 On an event, those component that subscribe to it

are invoked

 Peer-to-peer style
 Like object oriented systems; components use

services from each other through methods

 Communication processes style
 Processes which execute and communicate with

each other through message passing

Software Architecture 112

Architecture and Design

 Both arch and design partition the system
into parts and their org

 What is the relationship between design and
arch?
 Arch is a design; it is about the solution domain,

and not problem domain
 Can view arch as a very high level design focusing

on main components
 Design is about modules in these components that

have to be coded
 Design can be considered as providing the module

view of the system

Software Architecture 113

Contd…

 Boundaries between architecture and design
are not clear or hard

 It is for designer and architect to decide
where arch ends and design begins

 In arch, issues like files, data structure etc
are not considered, while they are important
in design

 Arch does impose constraints on design in
that the design must be consistent with arch

Software Architecture 114

Preserving the Integrity of
Architecture

 What is the role of arch during the rest of the
development process

 Many designers and developers use it for
understanding but nothing more

 Arch imposes constraints; the implementation must
preserve the arch

 I.e. the arch of the final system should be same as
the arch that was conceived

 It is very easy to ignore the arch design and go
ahead and do the development

 Example – impl of the word frequency problem

Software Architecture 115

Documenting Arch Design

 While designing and brainstorming,
diagrams are a good means

 Diagrams are not sufficient for
documenting arch design

 An arch design document will need to
precisely specify the views, and the
relationship between them

Software Architecture 116

Documenting…

 An arch document should contain
 System and architecture context

 Description of architecture views

 Across view documentation

 A context diagram that establishes the sys
scope, key actors, and data sources/sinks can
provide the overall context

 A view description will generally have a
pictorial representation, as discussed earlier

Software Architecture 117

Documenting…

 Pictures should be supported by
 Element catalog: Info about behavior,

interfaces of the elements in the arch

 Architectural rationale: Reasons for making
the choices that were made

 Behavior: Of the system in different
scenarios (e.g. collaboration diagram)

 Other Information: Decisions which are to
be taken, choices still to be made,..

Software Architecture 118

Documenting…

 Inter-view documentation
 Views are related, but the relationship is not clear

in the view
 This part of the doc describes how the views are

related (eg. How modules are related to
components)

 Rationale for choosing the views
 Any info that cuts across views

 Sometimes views may be combined in one
diagram for this – should be done if the
resulting diagram is still easy to understand

Software Architecture 119

Evaluating Architectures

 Arch impacts non-functional attributes like
modifiability, performance, reliability,
portability, etc
 Attr. like usability etc are not impacted

 Arch plays a much bigger impact on these
than later decisions

 So should evaluate a proposed arch for these
properties

 Q: How should this evaluation be done?
 Many different ways

Software Architecture 120

Evaluating Architectures…

 Procedural approach – follow a sequence of
steps
 Identify the attributes of interest to different

stakeholders

 List them in a table

 For each attribute, evaluate the architectures
under consideration

 Evaluation can be subjective based on experience

 Based on this table, then select some arch or
improve some existing arch for some attribute

Software Architecture 121

Summary

 Arch of a sw system is its structures
comprising of elements, their external
properties, and relationships

 Arch is a high level design

 Three main view types – module, component
and connector, and allocation

 Component and connector (C&C) view is
most commonly used

Software Architecture 122

Summary…

 There are some C&C styles that are
commonly used, e.g. pipe-and-filter,
shared data, client server,....

 An arch description should document
the different views and their
relationship – views can be combined

 Rationale and other supporting
information should also be captured

Software Architecture 123

Summary…

 Arch can be analyzed for various non-
functional attributes like performance,
reliability, security, etc

 ATAM is one approach for analyzing
architectures, which evaluates
attributes of interest under different
scenarios

