
SOFTWARE ENGINEERING 1

Software

 Q : If you have to write a 10,000 line program
in C to solve a problem, how long will it take?

 Answers: generally range from 2-4 months

 Let us analyze the productivity

 Productivity = output/input resources

 In SW output is considered as LOC

 Input resources is effort - person months; overhead
cost modeled in rate for person month

 Though not perfect, some productivity measure is
needed, as project has to keep it high

SOFTWARE ENGINEERING 2

Software …

 The productivity is 2.5-5 KLOC/PM

 Q: What is the productivity in a typical
commercial SW organization ?

 A: Between 100 to 1000 LOC/PM

 Q: Why is it low, when your productivity is so
high? (people like you work in the industry)

 A: What the student is building and what the
industry builds are two different things

SOFTWARE ENGINEERING 3

Software…

 In a univ a student system is built while the
commercial org builds industrial strength sw

 What is the difference between a student
program and industrial strength sw for the
same problem?

 Software (IEEE): collection of programs,
procedures, rules, and associated
documentation and data

SOFTWARE ENGINEERING 4

Software…

Student

 Developer is the user

 bugs are tolerable

 UI not important

 No documentation

Industrial Strength

 Others are the users

 bugs not tolerated

 UI v. imp. issue

 Documents needed for
the user as well as for
the organization and
the project

SOFTWARE ENGINEERING 5

Software…

Student

 SW not in critical use

 Reliability, robustness
not important

 No investment

 Don’t care about
portability

Industrial Strength

 Supports important
functions / business

 Reliability , robustness
are very important

 Heavy investment

 Portability is a key
issue here

SOFTWARE ENGINEERING 6

Industrial strength software

 Student programs for a problem & industrial
strength software are two different things

 Key difference is in quality (including usability,
reliability, portability, etc.)

 Brooks thumb-rule: Industrial strength sw
costs 10 time more than student sw

 In this course, software means industrial
strength software

 This software has some characteristics

SOFTWARE ENGINEERING 7

Is Expensive

 Let us look at costs involved

 Productivity = Appx 1000 LOC/PM

 Cost = $3K to $10K/PM

 Cost per LOC = $5 to $15

 I.e, each line of delivered code costs many $s

 A simple application for a business may have
20KLOC to 50KLOC

 Cost = $100K to $2.25Million

 Can easily run on $10K-$20K hardware

 So HW costs in an IT solution are small as
compared to SW costs.

SOFTWARE ENGINEERING 8

Requires tight Schedule

 Business requirements today demand short
delivery times for software

 In the past, software products have often
failed to be completed in time

 Along with cost, cycle time is a fundamental
driving force

SOFTWARE ENGINEERING 9

Productivity – for cost and
schedule

 An industrial strength software project is
driven by cost and schedule

 Both can be modeled by productivity,
measured in terms of output per unit effort
(e.g. LOC per person month)

 Higher productivity leads to lower cost

 Higher productivity leads to lower cycle time

 Hence, for projects (to deliver software),
quality and productivity are basic drivers

SOFTWARE ENGINEERING 10

Quality

 Along with productivity, quality is the
other major driving factor

 Developing high Q sw is a basic goal

 Quality of sw is harder to define

SOFTWARE ENGINEERING 11

Quality – ISO standard

SOFTWARE ENGINEERING 12

Quality – ISO std…

 ISO std has six attributes

 Functionality

 Reliability

 Usability

 Efficiency

 Maintainability

 Portability

SOFTWARE ENGINEERING 13

Quality…

 Multiple dimensions mean that not easy
to reduce Q to a single number

 Concept of Q is project specific

 For some reliability is most important

 For others usability may be more important

 Reliability is generally considered the
main Q criterion

SOFTWARE ENGINEERING 14

Quality…

 Reliability = Probability of failure
 hard to measure

 approximated by no. of defects in software

 To normalize Quality = Defect density
 Quality = No. of defects delivered / Size

 Defects delivered - approximated with
no. of defects found in operation

 Current practices: less than 1 def/KLOC

 What is a defect? Project specific!

SOFTWARE ENGINEERING 15

Quality – Maintainability

 Once sw delivered, it enters the maintenance
phase, in which
 Residual errors are fixed – this is corrective

maintenance
 Upgrades and environment changes are done –

this is adaptive maintenance

 Maintenance can consume more effort than
development over the life of the software
(can even be 20:80 ratio!)

 Hence maintainability is another quality
attribute of great interest

SOFTWARE ENGINEERING 16

Quality and Productivity

 Hence, quality and productivity (Q&P)
are the basic drivers in a sw project

 The aim of most methodologies is to
deliver software with a high Q&P

 Besides the need to achieve high Q&P
there are some other needs

SOFTWARE ENGINEERING 17

Change

 Only constant in business is change!

 Requirements change, even while the
project is in progress

 In a project, up to 40% of development
effort may go in implementing changes

 Practices used for developing software
must accommodate change

SOFTWARE ENGINEERING 18

Scale

 Most industrial strength software tend to
be large and complex

 Methods for solving small problems do
not often scale up for large problems

 Two clear dimensions in a project
 engineering

 project management

 For small, both can be done informally,
for large both have to be formalized

SOFTWARE ENGINEERING 19

Scale…

SOFTWARE ENGINEERING 20

Scale…

 An illustration of issue of scale is
counting the number of people in a
room vs taking a census

 Both are counting problems

 Methods used in first not useful for census

 For large scale counting problem, must use
different techniques and models

 Management will become critical

SOFTWARE ENGINEERING 21

Scale: Examples

Gcc 980KLOC C, C++, yacc

Perl 320 KLOC C, perl, sh

Appache 100 KLOC C, sh

Linux 30,000 KLOC C, c++

Windows XP 40,000 KLOC C, C++

SOFTWARE ENGINEERING 22

Scale…

 As industry strength software tends to
be large, hence methods used for
building these must be able to scale up

 For much of the discussion, we will high
Q&P as the basic objective

SOFTWARE ENGINEERING 23

Summary

 The problem domain for SE is industrial
strength software

 SE aims to provide methods for systematically
developing (industrial strength) software

 Besides developing software the goal is to
achieve high quality and productivity (Q&P)

 Methods used must accommodate changes,
and must be able to handle large problems

