

1

DEPARTMENT OF

ELECTRONICS & COMMUNICATION ENGINEERING

EMBEDDED SYSTEMS LAB

MICROPROCESSORS & MICROCONTROLLERS LAB (IT)

III - B. Tech., I - Semester

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous, Accredited by NBA & NAAC, an ISO 9001:2008 certified institution)

 (Sponsored by Siddhartha Academy of General & Technical Education)

VIJAYAWADA – 520 007
ANDHRA PRADESH

2

MICROPROCESSORS &
MICROCONTROLLERS LAB

(IT)

3

LIST OF EXPERIMENTS

1. Introduction to Debugger / XT86 / TASM: 8-bit Arithmetic Operations

2. 16-bit Signed and unsigned Arithmetic operations, ASCII – arithmetic operations.

3. Arithmetic operations – Multi byte Addition and Subtraction, Sum of Squares,

Sum of Cubes

4. Logic operations – Shift and rotate – Converting packed BCD to unpacked BCD,

BCD to ASCII conversion.

5. 8255 – PPI: Write ALP to generate sinusoidal wave using PPI.

6. Using string operation and Instruction prefix: Move Block, Reverse string, String

comparison

7. Write ALP to find smallest, largest number, arrange numbers in Ascending order,

Descending order in a given series.

8. Traffic Lights Interface.

9. Stepper Motor Interface

10. 8279 – Keyboard Display: Write a small program to display a string of characters.

11. ADC Interface / DAC Interface.

12. Arithmetic Operations using 8051.

13. Reading and Writing on a parallel port.

14. Timer in Different Modes

15. Serial Communication using 8051.

4

1. EXPERIMENT
INTRODUCTION TO MASM /TASM

MASM: (Microsoft assembler)
To Create Source File: An editor is a program which allows you to create a file containing
the assembly language statements for your program. This file is called a source file.
Command to create a source file
C:\MASM\BIN> Edit filename. asm

The next step is to process the source file with an assembler. When you run the
assembler, it reads the source file of your program. On the first pass through the source
program, the assembler determines the displacement of named data items, the offset
labels, etc. and puts this information in a symbol table. On the second pass through the
source program the assembler produces the binary code for each instruction and inserts
the offsets, etc. that it calculated during first pass.

C:\MASM\BIN > Masm filename. asm X, Y, Z
With this command assembler generates three files.

1. The first file (X) called the object file, is given the extension .OBJ the object file
contains the binary codes for the instructions and Information about the
addresses of the instructions.

2. The second file (Y) generated by the assembler is called the assembler list file
and is given the extension .LST. The list file contains your assembly language
statements, the binary codes for each instruction and the offset for each
instruction.

3. The third file (Z) generated by this assembler is called the cross-reference file
and is given the extension .CRF. The cross-reference file lists all labels and
pertinent information required for cross – referencing

NOTE: The Assembler only finds syntax errors: It will not tell you whether program
does what it is supposed to do. To determine whether your program works, you have to
run the program and test it.
Next step is to process the object file with linker.

C:\MASM\BIN>LINK filename. obj
Run File [Filename1.exe]: “filename1.exe”
Lists file [nul.map]: NUL
Libraries [.lib]: library_name
Definitions File [nul.def] :

Creation of Library: Refer Modular Programming Section
A Linker is a program used to join several object files into one layer object file
NOTE: On IBM PC – type Computers, You must run the LINK program on your .OBJ file
even if it contains only one assembly module.
The linker produces a link file with the .EXE extension (an execution file)
Next Run C:\MASM\BIN> filename

TASM: (Turbo Assembler)

5

To Create Source File: An editor is a program which allows you to create a file containing
the assembly language statements for your program. This file is called a source file.
Command to create a source file
C:\TASM\BIN> Edit filename. Asm

The next step is to process the source file with an assembler. When you run the
assembler, it reads the source file of your program. On the first pass through the source
program, the assembler determines the displacement of named data items, the offset
labels, etc. and puts this information in a symbol table. On the second pass through the
source program the assembler produces the binary code for each instruction and inserts
the offsets, etc. that it calculated during first pass.
C:\TASM\BIN > TASM filename. asm X, Y, Z
With this command assembler generates three files.

1. The first file (X) called the object file, is given the extension .OBJ the object file
contains the binary codes for the instructions and information about the
addresses of the instructions.

2. The second file (Y) generated by the assembler is called the assembler list file
and is given the extension .LST. The list file contains your assembly language
statements, the binary codes for each instruction and the offset for each
instruction.

3. The third file (Z) generated by this assembler is called the cross-reference file
and is given the extension .CRF. The cross-reference file lists all labels and
pertinent information required for cross – referencing

NOTE: The Assembler only finds syntax errors: It will not tell you whether program
does what it is supposed to do. To determine whether your program works, you have to
run the program and test it.
Next step is to process the object file with linker.
C:\TASM\BIN>TLINK filename. obj
A Linker is a program used to join several object files into one layer object file
NOTE: On IBM PC – type Computers, You must run the LINK program on your .OBJ file
even if it contains only one assembly module.
The linker produces a link file with the .EXE extension (an execution file)
Next Run
C:\TASM\BIN> TD filename.exe

Assembly Language Program Format:
The assembler uses two basic formats for developing S/W
a) One method uses MODELS and

b) Other uses Full-Segment Definitions

* The models are easier to use for simple tasks.
* The full – segment definitions offer better control over the assembly language task and
are recommended for complex programs.
a) Format using Models:
; ABSTRACT; 8086 program
; Aim of Program
; REGISTERS; Registers used in your program
; PORTS; PORTS used in your program
. MODEL (type of model i.e. size of memory system)

6

FOR EXAMPLE
. MODEL SMALL
. STACK size of stack; define stack
. DATA; define data segment

------Define variables

. CODE; define code segment s
HERE: MOV AX, @DATA; load ES, DS
MOV ES, AX
MOV DS, AX

. EXIT 0; exit to DOS
END HERE
(or)
We can write Code segment as follows.
. CODE; Define Code Segment
. STARTUP
EXIT 0
END

7

2. EXPERIMENT
16-bit SIGNED, UNSIGNED AND ASCII ARITHMETIC OPERATIONS

AIM: To perform signed, unsigned and ASCII arithmetic operations using TASM
software.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:
1. Go to start menu and click on run button.
2. Then a command window is opened, then type cmd in the text box and press ok.
3. D: //enter into D drive.
4. CD TASM
5. EDIT //window is opened to write source code in TASM environment.
6. Write program using respective commands and save the program with .ASM

extension and quit.
7. D:\TASM>TASM filename.asm //to check errors.
8. tlink filename //to connect to executable files.
9. td filename //to debug the executable file and to see the RESULT of the

operation.
10. Press F8 to get stepwise execution of the program or F9 to run program.
11. Required outputs are noted down.

UNSIGNED ARITHMETIC OPERATIONS

ADDITION:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 0A2H
OPR2 DB 0A1H
RES DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
ADD AL, BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT;

 OUTPUT;

8

SUBTRACTION:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 0A2H
OPR2 DB 0A1H
RES DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
SUB AL, BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT;

OUTPUT;

MULTIPLICATION:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DW 0A2H
OPR2 DW 0A1H
RES DW 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AX, OPR1
MOV BX, OPR2
MUL BX
MOV RES, AX
INT 03H
CODE ENDS
END START
END
RESULT: INPUT;

 OUTPUT;

9

DIVISION:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DW 0A0H
OPR2 DW 0A1H
RES DW 1 DUP (0H)
DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AX, OPR1
MOV BX, OPR2
DIV BX
MOV RES, AX
INT 03H
CODE ENDS
END START
END

RESULT: INPUT;

OUTPUT;

SIGNED ARITHMETIC OPERATIONS
ADDITION:
ASSUME CS: CODE, DS:DATA
DATA SEGMENT
OPR1 DB 25H
OPR2 DB 37H
RES DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
ADC AL, BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END
RESULT: INPUT;

 OUTPUT

10

SUBTRACTION:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 25H
OPR2 DB 37H
RES DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
SBB AL, BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT;

OUTPUT

MULTIPLICATION :(+,+)

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 16H
OPR2 DB 5H
RES DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
IMUL BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT;

OUTPUT:

11

MULTIPLICATION :(+,-)
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 16H
OPR2 DB 0FBH
RES DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
IMUL BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END
RESULT:

 INPUT;
OUTPUT;

MULTIPLICATION :(-,+)
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 0EAH
OPR2 DB 5H
RES DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
IMUL BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END

RESULT:

INPUT;
OUTPUT;

12

MULTIPLICATION :(-,-)
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 0EAH
OPR2 DB 0FBH
RES DB 1 DUP (0H)
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AL, OPR1
MOV BL, OPR2
IMUL BL
MOV RES, AL
INT 03H
CODE ENDS
END START
END
RESULT:
INPUT;
OUTPUT;

DIVISION :(+,+)
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 16H
OPR2 DB 5H
RE DB 1 DUP (0H)
QU DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AH, 00H
MOV AL, OPR1
MOV BL, OPR2
IDIV BL
MOV QU, AL
MOV RE, AH
INT 03H
CODE ENDS
END START
END
RESULT:

INPUT;
OUTPUT;

13

DIVISION :(+,-)
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 16H
OPR2 DB 0FBH
RE DB 1 DUP (0H)
QU DB 1 DUP (0H)
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AH, 00H
MOV AL, OPR1
MOV BL, OPR2
IDIV BL
MOV QU, AL
MOV RE, AH
INT 03H
CODE ENDS
END START
END
RESULT:
INPUT;
OUTPUT;

DIVISION :(-,+)
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 0EAH
OPR2 DB 5H
RE DB 1 DUP (0H)
QU DB 1 DUP (0H)
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV AH, 00H
MOV AL, OPR1
MOV BL, OPR2
IDIV BL
MOV QU, AL
MOV RE, AH
INT 03H
CODE ENDS
END START
END
RESULT:
INPUT;
OUTPUT;

14

DIVISION :(-,-)
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 0EAH
OPR2 DB 0FBH
RE DB 1 DUP (0H)
QU DB 1 DUP (0H)
 DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV AH, 00H
MOV AL, OPR1
MOV BL, OPR2
IDIV BL
MOV QU, AL
MOV RE, AH
INT 03H
CODE ENDS
END START
END

RESULT:
 INPUT;
OUTPUT;

ASCII ARITHMETIC OPERATIONS

ADDITION:
ASSUME CS:CODE
CODE SEGMENT
START:
MOV AX, 35H
MOV BX, 39H
ADD AX, BX
AAA
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
OUTPUT-

15

SUBTRACTION:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 37H
MOV BX, 33H
SUB AX, BX
AAS
INT 03H
CODE ENDS
END START
END
RESULT: INPUT-
OUTPUT-

MULTIPLICATION:
ASSUME CS:CODE
CODE SEGMENT
START:
MOV AL, 3H
MOV BL, 7H
MUL BL
AAM
INT 03H
CODE ENDS
END START
END
RESULT: INPUT-
OUTPUT-

DIVISION:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 9H
MOV BX, 5H
AAD
DIV BL
INT 03H
CODE ENDS
END START
END
RESULT: INPUT-
OUTPUT-

RESULT: Hence signed, unsigned and ASCII arithmetic operations are performed using
TASM software and required outputs are noted down.

16

3. EXPERIMENT
Arithmetic operations – Multi byte Addition and

Subtraction, Sum of Squares, Sum of Cubes
AIM: To perform multi byte arithmetic operations using TASM software.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:

1. Go to start menu and click on run button.
2. Then a command window is opened, then type cmd in the text box and press ok.
3. D: //enter into D drive.
4. CD TASM
5. EDIT //window is opened to write source code in TASM environment.
6. Write program using respective commands and save the program with .ASM

extension and quit.
7. D:\TASM>TASM filename.asm //to check errors.
8. tlink filename //to connect to executable files.
9. td filename //to debug the executable file and to see the RESULT of the

operation.
10. Press F8 to get stepwise execution of the program or F9 to run program.
11. Go to view option and click on dump option to verify the output.
12. Required outputs are noted down.

PROGRAMS:
ADDITION
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 12H, 34H, 56H, 29H
OPR2 DB 32H, 04H, 76H, 21H
RES DW 1 DUP (0H)
DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV SI, OFFSET OPR1
MOV DI, OFFSET OPR2
MOV BX, OFFSET RES
MOV CX, 04H
BACK:
MOV AL, [SI]
MOV DL, [DI]
MOV AH, 00H
ADC AL, DL
MOV [BX], AX
INC SI
INC DI
INC BX

17

LOOP BACK
INT 03H
CODE ENDS
END START
END

RESULT: INPUT-
OUTPUT-

SUBTRACTION

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
OPR1 DB 12H, 34H, 56H, 29H
OPR2 DB 32H, 04H, 76H, 21H
RES DW 1 DUP (0H)
DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV SI, OFFSET OPR1
MOV DI, OFFSET OPR2
MOV BX, OFFSET RES
MOV CX, 04H
BACK:
MOV AL, [SI]
MOV DL, [DI]
MOV AH, 00H
ADC AL, DL
MOV [BX], AX
INC SI
INC DI
INC BX
LOOP BACK
INT 03H
CODE ENDS
END START
END

RESULT:

INPUT-
OUTPUT-

18

SUM OF SQUARES:

MOV CL, NUM
MOV SUM, 00
L1: MOV AL, CL
MUL AL
ADD AL, SUM
MOV SUM, AL
LOOP L1
END

RESULT:
INPUT:
OUTPUT:

SUM OF CUBES

MOV CL, NUM
MOV SUM, 00
L1: MOV AL, CL
MUL AL
MUL CL
ADD AL, SUM
MOV SUM, AL
LOOP L1
END

19

4. EXPERIMENT
Logic operations – Shift and rotate – Converting packed

BCD to unpacked BCD, BCD to ASCII conversion

AIM: To perform

1. logical shift and rotate operations,
2. Conversion of packed BCD to unpacked BCD and BCD to ASCII using TASM.

EQUIPMENT REQUIRED loaded with TASM software.

PROCEDURE:

1. Go to start menu and click on run button.
2. Then a command window is opened, then type cmd in the text box and press ok.
3. D: //enter into D drive.
4. CD TASM
5. EDIT //window is opened to write source code in TASM environment.
6. Write program using respective commands and save the program with .ASM

extension and quit.
7. D:\TASM>TASM filename.asm //to check errors.
8. tlink filename //to connect to executable files.
9. td filename //to debug the executable file and to see the RESULT of the

operation.
10. Press F8 to get stepwise execution of the program or F9 to run program.
11. Required outputs are noted down.

PROGRAMS:

LOGICAL OPERATIONS: AND

ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 3355H
MOV BX, 5355H
AND AX, BX
INT 03H
CODE ENDS
END START
END

RESULT: INPUT

 OUTPUT-

20

OR:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 3355H
MOV BX, 5355H
OR AX, BX
INT 03H
CODE ENDS
END START
END

RESULT: INPUT

 OUTPUT-

NOT:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 3355H
NOT AX
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
OUTPUT-

XOR:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 3355H
MOV BX, 5355H
XOR AX, BX
INT 03H
CODE ENDS
END START
END

RESULT: INPUT

 OUTPUT-

21

SHIFT OPERATIONS: RIGHT
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 5352H
MOV CL, 01H
SHR AX, CL
 INT 03H
CODE ENDS
END START
END
RESULT: INPUT

OUTPUT-

LEFT:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 5352H
MOV CL, 02H
SHL AX, CL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT

OUTPUT-

ROTATE RIGHT:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 8351H
MOV CL, 01H
ROR AX, CL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT

OUTPUT-

22

LEFT:
ASSUME CS: CODE
CODE SEGMENT
START:
MOV AX, 8351H
MOV CL, 03H
ROL AX, CL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
 OUTPUT-

PACKED BCD TO UNPACKED BCD

ASSUME CS: CODE
CODE SEGMENT
START:
MOV AL, 56H
MOV AH, AL
SHR AH, 04H
AND AX, 0F0FH
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
 OUTPUT-

BCD TO ASCII

ASSUME CS: CODE
CODE SEGMENT
START:
MOV AL, 56H
MOV AH, AL
SHR AH, 04H
AND AX, 0F0FH
OR AX, 3030H
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
 OUTPUT-

23

5. EXPERIMENT
SINE WAVE GENERATION USING 8255

AIM: To generate a sine wave using 8255.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:

1. First click on start and then select run and type cmd then ok.
2. Type D:// Enter into D Drive.
3. Type cd esa// Enter into ESA
4. Type XT86.
5. In the processor kit, reset the processor by pressing the reset button.
6. Now enter. A, next. DA address, Enter the program in the window.
7. The program is to be entered a space before every instruction.
8. For the execution shift+1 (or)! is entered.
9. Then type Ex and Enter Key.
10. After that type G.
11. Then enter the starting address.
12. Then the sinewave is displayed on the CRO.
13. Then observe the wave form and take readings like amplitude and frequency.

PROGRAM:
MOVB AL, #80
MOVW DX, #0FFE7
OUTB DX
L7 MOVB AL, #00
L1 MOVW DX, #0FFE1
 OUTB DX
 INCB AL
 CMPB AL, #0F
 JB L1
L2 MOVW DX, #0FFE1
 OUTB DX
 INCB AL
 INCB AL
 INCB AL
 CMPB AL, #0EF
 JB L2
L3 MOVW DX, #0FFE1
 OUTB DX
 INCB AL
 CMPB AL, #0FF
 JB L3
L4 MOVW DX, #0FFE1
 OUTB DX
 DECB AL
 CMPB AL, #0EF

24

 JA L4
L5 MOVW DX, #0FFE1
 OUTB DX
 DECB AL
 DECB AL
 DECB AL
 CMPB AL, #0F
 JA L5
L6 MOVW DX, #0FFE1
 OUTB DX
 DECB AL
 CMPB AL, #00
 JA L6
JMP L7
INT 03!

RESULT:
Sine Wave.

25

6. EXPERIMENT
STRING OPERATIONS-1

AIM: To perform string operations like move block, reverse string, sorting using TASM
software.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:

1. Go to start menu and click on run button.
2. Then a command window is opened, then type cmd in the text box and press ok.
3. D: //enter into D drive.
4. CD TASM
5. EDIT //window is opened to write source code in TASM environment.
6. Write program using respective commands and save the program with .ASM

extension and quit.
7. D:\TASM>TASM filename.asm //to check errors.
8. tlink filename //to connect to executable files.
9. td filename //to debug the executable file and to see the RESULT of the

operation.
10. Press F8 to get stepwise execution of the program or F9 to run program.
11. Go to view option and click on dump option to verify the output.
12. Required outputs are noted down.

PROGRAMS:
MOVING BLOCK OF STRING:
ASSUME CS: CODE, DS: DATA, ES: EXTRA
DATA SEGMENT
ORG 1000H
STR1 DB ‘HIFRIEND’
DATA ENDS
EXTRA SEGMENT
ORG 2000H
STR2 DB 1 DUP (0H)
EXTRA ENDS
CODE SEGMENT:
START:
MOV AX, DATA
MOV DS, AX
MOV AX, EXTRA
MOV ES, AX
MOV SI, OFFSET STR1
MOV DI, OFFSET STR2
 MOV CL, 0AH
CLD
REP MOVSB
INT 03H
CODE ENDS

26

END START
END
RESULT: INPUT
 OUTPUT

REVERSE OF A STRING:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT
ORG 1000H
STR1 DB ‘HI FRIEND’
DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV SI, OFFSET STR1
MOV DI, 00BH
MOV CL, 04H
BACK:
MOV AL, [SI]
XCHG [DI], AL
XCHG [SI], AL
INC SI
DEC DI
LOOP BACK
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
 OUTPUT

27

COMPARISON OF STRING:
ASSUME CS: CODE, DS: DATA, ES: EXTRA
DATA SEGMENT
ORG 1000H
STR1 DB ‘HI FRIEND’
DATA ENDS
EXTRA SEGMENT
ORG 2000H
STR2 DB ‘HIFRIEND’
EXTRA ENDS
CODE SEGMENT:
START:
MOV AX, DATA
MOV DS, AX
MOV AX, EXTRA
MOV ES, AX
MOV SI, OFFSET STR1
MOV DI, 0AH
 MOV CL, 0AH
REP CMPSB
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
 OUTPUT

28

7. EXPERIMENT
Smallest, largest number, arrange numbers in Ascending

order, Descending order

AIM: Using string operations to perform smallest, largest number, arrange numbers in
ascending order, descending order in a given series.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:

1. Go to start menu and click on run button.
2. Then a command window is opened, then type cmd in the text box and press ok.
3. D: //enter into D drive.
4. CD TASM
5. EDIT //window is opened to write source code in TASM environment.
6. Write program using respective commands and save the program with .ASM

extension and quit.
7. D:\TASM>TASM filename.asm //to check errors.
8. tlink filename //to connect to executable files.
9. td filename //to debug the executable file and to see the RESULT of the

operation.
10. Press F8 to get stepwise execution of the program or F9 to run program.
11. Go to view option and click on dump option to verify the output.
12. Required outputs are noted down.

PROGRAMS:
SMALLEST NUMBER FROM GIVEN LIST:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
LIST DB 05H, 19H, 26H, 56H, 44H
RES DB 1 DUP (0H)
DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV CX, 0004H
MOV BL, [SI]
MOV SI, OFFSET LIST
L2:
MOV AL, [SI+1]
CMP BL, AL
JB L1
MOV BL, AL
L1:
INC SI
LOOP L2
MOV RES, BL

29

INT 03H
CODE ENDS
END START
END
RESULT: INPUT
 OUTPUT

LARGEST NUMBER FROM GIVEN LIST:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
LIST DB 05H, 19H, 26H, 56H, 44H
RES DB 1 DUP(0H)
DATA ENDS
CODE SEGMENT
START:
MOV AX, DATA
MOV DS, AX
MOV CX, 0004H
MOV BL, [SI]
MOV SI, OFFSET LIST
L2:
MOV AL, [SI+1]
CMP BL, AL
JA L1
MOV BL, AL
L1:
INC SI
LOOP L2
MOV RES, BL
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
 OUTPUT

ASCENDING ORDER:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
STR DB ‘BINDHU’
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV DX, 0005H
L3:
MOV CX, DX
MOV SI, OFFSET STR

30

L2:
MOV AL, [SI]
CMP AL, [SI+1]
JB L1
XCHG AL, [SI+1]
XCHG AL, [SI]
L1:
INC SI
LOOP L2
DEC DX
JNZ L3
INT 03H
CODE ENDS
END START
END

RESULT: INPUT
 OUTPUT

DESCENDING ORDER:
ASSUME CS: CODE, DS: DATA
DATA SEGMENT
STR DB ‘BINDHU’
DATA ENDS
CODE SEGMENT
START: MOV AX, DATA
MOV DS, AX
MOV DX, 0005H
L3:
MOV CX, DX
MOV SI, OFFSET STR
L2:
MOV AL, [SI]
CMP AL, [SI+1]
JA L1
XCHG AL, [SI+1]
XCHG AL, [SI]
L1:
INC SI
LOOP L2
DEC DX
JNZ L3
INT 03H
CODE ENDS
END START
END

RESULT: INPUT

OUTPUT

31

8. EXPERIMENT

TRAFFIC LIGHTS INTERFACING
AIM:

To study interfacing technique of Traffic Lights Interface with microprocessor
8086and write an 8086 ALP.

Apparatus: 8086 kit-1No, Traffic Light Interface Module.

Procedure:

Program:
ORG 2000H
MOV B AL,#08H
MOVW DX,#0FFE7H
OUTB DX,AL
MOVW CX,#0005
MOVW SI,#2006F
MOVB AL,[SI]
MOVW DX,#0FFE1H
OUTB DX,AL
INC SI
ADDW DX,#0002
MOVB AL,[SI]
OUTB DX,AL
INCW SI
ADDW DX,#0002
MOVB AL,[SI]
OUTB DX,AL
INCW SI
PUSH SI
PUSH CX
MOVW DX,#OFFEDH
INB AL,DX
TESTB AL,#08H
JZ
NOP
DB 9AH,70H,1BH
DB 00H,0FEH
DW AL,2C3C
JNZ 202B
JZ 2042
NOP
DB 9AH,1CH,0BH
DB 00H,0FFH
CMPB AL,#11H
JNZ 2038
POP CX
POP SI

32

MOVB AL,[SI]
MOVW DX,#0FFE1H
OUTB DX,#AL
INCW SI
ADDW DX,#0002
MOVB AL,[SI]
OUTB DX,AL
INCW SI
ADDW DX,#0002H
MOVB AL,[SI]
OUTB DX,AL
INCW SI
CALL 205F
LOOP 200C
JMP 2006
MOVB BL,#0FH
PUSH CX
MOVW CX,#1FFFH
NOP
LOOP 2066
DECB BL
JNZ 2063
POP CX
RET
DB 88H,83H,0F2H
DB 88H,87H,0F2H
DB 38H,88H,0F4H
DB 78H,88H,0F4H
DB 83H,88H,0F4H
DB 87H,88H,0F8H
DB 88H,38H,0F1H
DB 88H,38H,0F1H
DB 88H,88H,00H
DB 88H,88H,00H

RESULT:

33

9. EXPERIMENT
STEPPER MOTOR INTERFACE

AIM: Write an assembly language program for stepper motor interface with 8086.

Apparatus: 8086 Microprocessor with power supply

Stepper motor inter face

Procedure:

1. Go to start menu and click on RUN and it will be opened.
2. Enter address D:/ESA/XT86.EXE
3. Press enter to continue.
4. Reset microprocessor kit.
5. To enter into assemble mode type A and press “ENTER”
6. Initialize segment register to 0000 i.e sb 00
7. Clear label using command “LC”
8. Direct address (DA) to a location using DA command.

Program:
MOVB AL,#80
MOVW DX,#OFFH
OUTB DX
MOVB AL,#88
MOVW DX,#EFH
OUTB DX
CALL 2014
XCHGW AX,AX
RORL AL,2
JMP 2008
PUSHF
PUSH AX
MOVW BX,#03H
DECW BX
JNE 2019
POP AX
POPF
RET

Result:
Therefore the stepper motor interface is performed.

34

10. EXPERIMENT
8279 – KEYBOARD DISPLAY

AIM: To display a string of characters using 8279 Keyboard Display.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:
1. First click on start and then select run and type cmd then ok.
2. Type D:// Enter into D Drive.
3. Type cd esa// Enter into ESA
4. Type XT86.
5. In the processor kit, reset the processor by pressing the reset button.
6. Now enter. A, next. DA address, Enter the program in the window.
7. The program is to be entered a space before every instruction.
8. Then type CX and then shift +1,Ex enter key D6,93,67,F3,F3,83

G 5000(Address).
9. Then on the Display board the output is displayed as per the Hexadecimal input

 SCHOOL.
PROGRAM

MOVB AL, #90
MOVW DX, #82
OUTB DX
MOVB AL, #00
OUTB DX
MOVW CX, #08
RPT: MOVB AL, #00
 MOVW DX, #80
 OUTB DX
 LOOP 200C
 MOVW CX, #06
 MOVW SI, #2100
LOOP: MOVB AL, [SI]
 OUTB DX
 INCW [SI]
 LOOP 201A
 INT 03
RESULT:
SCHOOL

35

11. EXPERIMENT
ADC Interface / DAC Interface

AIM: To generate a square wave using 8255.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:

1. First click on start and then select run and type cmd then ok.

2. Type D:// Enter into D Drive.

3. Type cd esa// Enter into ESA

4. Type XT86.

5. In the processor kit, reset the processor by pressing the reset button.

6. Now enter. A, next. DA address, Enter the program in the window.

7. The program is to be entered a space before every instruction.

8. For the execution shift+1 (or)! is entered.

9. Then type Ex and Enter Key.

10. After that type G.

11. Then enter the starting address.

12. Then the squarewave is displayed on the CRO.

13. Then observe the wave form and take readings like amplitude and
frequency.

PROGRAM:

MOVB AL, #80
MOVW DX, #0FFE7
OUTB DX
L3 MOVB AL, #00
MOVW DX, #0FFE0
MOVW CX, #00FF
L1 OUTB DX
 LOOP L1
 MOVB AL, #0A
 MOVW CX, #00FF
L2 OUTB DX
 LOOP L2
 LOOP L3
INT 03!

RESULT:
Square Wave.

36

12. EXPERIMENT
ARITHMETIC OPERATIONS USING 8051

AIM: To write an assembly program

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:
1. First click on start and then select run and type cmd then ok.
2. Type D:// Enter into D Drive.
3. Type cd esa// Enter into ESA
4. Type XT86.
5. Type >A 8000, here 8000 is the memory in which you want to write the data.
6. Write the program and then to see the total program press Z then SA and EA

memory locations
7. To execute SR enter the starting address and press enter .
8. Then you can see the output.

PROGRAM

ADDITION:

ORG 8000H
MOV DPTR, #9000H
MOVX A,@DPTR
MOV 0F0H,A
MOV DPTR,#9001H
MOVX A, @DPTR
ADD A,0F0H
MOV DPTR,#9002H
MOVX @DPTR,A
LJMP 0

RESULT:
INPUT:
OUTPUT:

SUBTRACTION:

ORG 8000H
MOV DPTR, #9001H
MOVX A,@DPTR
MOV 0F0H,A
MOV DPTR,#9000H
MOVX A, @DPTR
SUB A,0F0H
MOV DPTR,#9002H
MOVX @DPTR,A
LJMP 0

37

MULTIPLICATION:

ORG 8000H
MOV DPTR, #9001H
MOVX A,@DPTR
MOV 0F0,A
MOV DPTR,#9000H
MOVX A, @DPTR
MUL AB
MOV DPTR,#9002H
MOVX @DPTR,A
LJMP 0

RESULT:
INPUT:
OUTPUT:

DIVISION:

ORG 8000H
MOV DPTR, #9001H
MOVX A,@DPTR
MOV 0F0,A
MOV DPTR,#9000H
MOVX A, @DPTR
DIV AB
MOV DPTR,#9002H
MOVX @DPTR,A
LJMP 0

RESULT:
INPUT:
OUTPUT:

38

13. EXPERIMENT
READING AND WRITING IN A PARALLEL PORT

AIM: To write an assembly program

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:
1. First click on start and then select run and type cmd then ok.
2. Type D:// Enter into D Drive.
3. Type cd esa// Enter into ESA
4. Type XT86.
5. Type >A 8000, here 8000 is the memory in which you want to write the data.
6. Write the program and then to see the total program press Z then SA and EA

memory locations
7. To execute SR enter the starting address and press enter .
8. Then you can see the output.

PROGRAM

MOV A, #20
MOV 90, A
MOV R1,90
MOV A, #00
SJMP 8008

RESULT:
OUTPUT
A B SP PSW DPH DPL TH0 TL0 TH1 TL1 P1 P3 PCH PCL
<E0> <F0> <81> <D0> <83> <82> <8C> <8A> <8D> <8B>
00 00 07 01 00 00 00 00 00 00 20 FB 80 08
R0 R1 R2 R3 R4 R5 R6 R7 PSW
00 20 1B 99 DF 6F B3 20 00000007

39

14. EXPERIMENT

TIMER IN DIFFERENT MODES

AIM: - To perform the operation of timer in different modes using 8051.

EQUIPMENT REQUIRED: PC loaded with TASM software.

PROCEDURE:
1. First click on start and then select run and type cmd then ok.
2. Type D:// Enter into D Drive.
3. Type cd esa// Enter into ESA
4. Type XT86.
5. Type >A 8000, here 8000 is the memory in which you want to write the data.
6. Write the program and then to see the total program press Z then SA and EA

memory locations
7. To execute SR enter the starting address and press enter .
8. Then you can see the output.

PROGRAM: -

ADDRESS OPCODE LABEL MNEMONIC OPERAND

 MOV 89, #01

 WAIT : MOV 8A,#0F2

 MOV 8C,#0FF

 CPL 95

 ACALL DELAY

 SJMP WAIT

 DELAY : SETB 8C

 HERE : JNB 8D, HERE

 CLR 8C

 CLR 8D

 RET

RESULT: -

Input:

Output:

40

15. EXPERIMENT
SERIAL COMMUNICATION USING 8051

AIM: - To perform serial communication between the Master and Slave microprocessor
using 8051 micro controller.

APPARATUS:
 8051 Micro controller
 Key board
 Power supply
THEORY: -

 The serial port is full duplex, meaning it can transmit and receive simultaneously.
It is also receive buffered, meaning it can commence reception of second byte before a
previously received byte has been read from the receive register. The serial port receive
and transmit registers are both accessed at special function register SBUF to SBUF
accesses a physically separate receive register. However, if the first byte still has not
been by the time reception of the second byte is complete, one of the bytes will be last.

OPERATING MODES FOR SERIAL PORT: -

MODE 0: Serial data enters and exists through RXD, TXD outputs the shift clock. 8 bits
are received/transmitted. The baud rate is fixed at 1/12 the oscillator frequency.
MODE 1: 10 bits are transmitted (through TXD) or received ((through RXD): a start bit
(0), 8 (LSB first) bits and a stop bit (1). The baud rate is variable.
MODE2: 11 bits are transmitted (through TXD) or received (through RXD): a start bit
(0), 8 bits (LSB first), a 9th data bit and a stop bit (1).

PROGRAMMING 8051 FOR SERIAL DATA TRANSFER: -

1. Clear T1 with CLR T1 instruction.
2. Write a character to be sent into SBUF register
3. Check the T1 flag (register) bit with instruction JNB T1, XXXX to see if the

character has been transferred.
4. Go to step 1 to transfer the next character. The baud rate is 1/32 (or) 1/64 the

oscillator frequency.

PROGRAMMING 8051 FOR RECEIVING SERIAL DATA: -

1. Clear RI to CLR RI instruction.
2. Check the RI flag bit with instruction JNB, RI, XXXX to see if an entire character

has been transferred.
3. If R1 to see, SBUF has the byte save this byte.
4. Go to step 1 to receive the next character.

PROCEDURE: -
 Connect the master and slave in series and connect them to system. Press EXE
MEM, PROG MEM and then type the starting address of program (i. E. 8000) in master.
Press EXE MEM, PROG MEM and then 8100 in slave. Press EXE MEM, external data and
then enter the data at 9200 in master. Execute the slave first and then master {Press GO

41

8100 execute in slave and GO 8000 execute in master}. Then check contents of O/P
register for received data in slave.

PROGRAM FOR MASTER OPERATION: -

ADDRESS OPCODE LABEL MNEMONIC OPERAND

8000 LCALL 160E

 MOV DPTR, #9200

 MOVX A, @DPTR

 LCALL 160E

 NOP

 NOP

 NOP

 NOP

 INC DPTR

 MOVX A, @DPTR

 LCALL 160E

 HERE: SJMP HERE

PROGRAM FOR SLAVE OPERATION: -
ADDRESS OPCODE LABEL MNEMONIC OPERAND

8100 LCALL 16E2

 MOV DPTR, #9200

 LCALL 16E2

 MOVX @DPTR, A

 INC DPTR

 LCALL 16E2

 MOVX @DPTR, A

 HERE: SJMP HERE

Result: -

Input: -

Output: -

