DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING LAB MANUAL DIGITAL SIGNAL PROCESSING LAB IV - B. Tech. I - Semester

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY (Autonomous, Accredited by NBA & NAAC, an ISO 9001:2008 certified institution) (Sponsored by Siddhartha Academy of General & Technical Education) VIJAYAWADA – 520 007, ANDHRA PRADESH

1

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

DIGITAL SIGNAL PROCESSING LAB

LIST OF EXPERIMENTS

Part – A: (Using MATLAB)

- 1. Linear Convolution of two sequences.
- 2. Circular Convolution of two sequences
- 3. DFT and IDFT of the given sequences.
- 4. Frequency response of a discrete time system described by a difference equation.
- 5. Fast Fourier Transform. DHARTHA INS 7/7/
- 6. Determination of Power Density Spectrum of a given signal.
- 7. IIR Low Pass Digital Filter design.
- 8. IIR High Pass Digital Filter design.
- 9. FIR Low Pass Digital Filter design.
- 10. FIR High Pass Digital Filter design.

Part - B: (Using Code Composer Studio and TMS320C6713 DSP Starter Kit)

VIJAYAWADA

- 11. Linear Convolution.
- 12. Circular Convolution.
- 13. Generation of Sine wave & Square wave.

Part – C: Additional Programs

- 14. Implementation of Interpolation and Decimation.
- 15. Conversion of CD data to DVD data.
- 16. Sum of Sinusoidal signals (Gibb's Phenomenon)
- 17. M-Point Moving Average Filter Design

1. LINEAR CONVOLUTION OF TWO SEQUENCES

Aim: To perform linear convolution of given sequences using MATLAB.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step : 1 Get/Read the samples of x[n] to x.
- Step: 2 Get/Read the samples of h[n] to h.
- Step: 3 Get/Read the length of x to L.
- Step: 4 Get/Read the length of h to M.
- Step : 5 Get/Read the starting time of x[n] to N1.
- Step : 6 Get/Read the starting time of h[n] to N3.
- Step: 7 Determine N2 = N1 + L 1 and N4 = N3 + M 1.
- Step: 8 Define time vector n as N1:N2.
- Step : 9 Plot the Graph of x[n].
- Step: 10 Define time vector n as N3:N4.
- Step : 11 Plot the Graph of h[n].
- Step: 12 Define time vector n as N1+N3:N2+N4.
- Step: 13 Determine the convolution of x and h using

$$y[n] = \sum_{k=-\infty}^{\infty} x(k) * h(n-k)$$

Use two for loops for the above expression

Step : 14 Plot the graph of y[n].

Procedure:

1. Click on the MATLAB icon on the desktop (or go to Start – All programs and click on MATLAB) to get into the Command Window.

TECHNOLOGY

- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

Enter the samples of x[n]: [1 2 3 4] Enter the samples of h[n]: [1 2 1 2] Enter starting time of x[n]: -1 Enter starting time of h[n]: -1

Output:

Linear convolution of x[n] and h[n] is y = 1 4 8 14 15 10 8

Result: Hence linear convolution of given sequences is performed and output is observed using MATLAB.

2. CIRCULAR CONVOLUTION OF TWO SEQUENCES

Aim: To perform circular convolution of given sequences using MATLAB.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step : 1 Get/Read the samples of $x_1[n]$ to x_1 .
- Step : 2 Get/Read the samples of $x_2[n]$ to x2.
- Step : 3 Get/Read the length of x1 to N1.
- Step : 4 Get/Read the length of x^2 to N^2 .
- Step : 5 Define time vector n as 0:N1-1.
- Step : 6 Plot the Graph of x1[n].
- Step : 7 Define time vector n as 0:N2-1.
- Step : 8 Plot the Graph of x2[n].
- Step : 9 If N1 > N2, pad N1-N2 number of zeros to x2 Else, pad N2-N1 number of zeros to x1.
- Step: 10 Determine the maximum of (N1, N2) and store it N.
- Step: 11 Define time vector n as 0:N-1.
- Step: 12 Determine the circular convolution of x1 and x2 using

$$y[n] = \sum_{m=0}^{N-1} x(m) * (h(n-m))N$$

Use two for loops for the above expression

Step : 13 Plot the graph of y[n].

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

Enter the samples of x1[n]: [1 2 3 4 5] Enter the samples of x2[n]: [1 2 3]

Output:

Circular Convolution of x1[n] and x2[n] is y = 23 19 10 16 22

Result: Hence circular convolution of given sequences is performed and output is observed using MATLAB.

3. DFT/IDFT OF GIVEN SEQUENCE

Aim: To determine and plot the DFT/IDFT of a given sequence using MATLAB.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

Step:1	Get/Read the	samples of	x[n] to x .
--------	--------------	------------	---------------

- Step : 2 Find the length of x and store it in N.
- Step : 3 Initialize the arrays xk & ixk with same size as that of x.
- Step : 4 Find the DFT of the sequence x using

$$X(K) = \sum_{n=0}^{N-1} x(n) e^{-j2\pi nk/N}$$

Use two for loops for the above expression

Step : 5 Find the IDFT of the sequence xk using

$$\mathbf{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi nk/N}$$

Use two for loops for the above expression

Step : 6 Plot the Graphs of x, xk and ixk.

Procedure:

1. Click on the MATLAB icon on the desktop (or go to Start – All programs and click on MATLAB) to get into the Command Window.

TECHNOLOGY

³

- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

Enter the sequence x(n): [1 2 3 4]

Output:

DFT of the given sequence x[n] is 10.0000 + 0.0000i -2.0000 + 2.0000i -2.0000i -2.0000i -2.0000i

4. FREQUENCY RESPONSE OF A DISCRETE TIME SYSTEM

Aim: To plot & observe the frequency response of first order and second order discrete-time LTI systems described by the difference equations

- a) y(n) 0.5 y(n-1) = x(n)
- b) y(n) + 0.8 y(n-1) + 0.125 y(n-2) = x(n) + 2x(n-1)

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step : 1 Get/Read the coefficients of x(n) to a.
- Step: 2 Get/Read the coefficients of y(n) to b.
- Step : 3 Define the frequency range vector w.
- Step : 4 Find the frequency response of the filter by using the coefficients b and a.
- Step: 5 Calculate the magnitude of the frequency response
- Step : 6 Plot the magnitude response of the filter
- Step: 7 Calculate the phase response of the filter
- Step: 8 Plot the phase response of the filter

Procedure:

1. Click on the MATLAB icon on the desktop (or go to Start – All programs and click on MATLAB) to get into the Command Window.

TECHNOLOG

- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input 1:

enter the coefficients of x(n): [1] Enter the coefficients of y(n): [1, -0.5]

Result: Hence the frequency response of a first order and second order discrete-time LTI systems are observed and plotted using MATLAB.

5. FAST FOURIER TRANSFORM

Aim: To compute the Fast Fourier transform of a given signal using MATLAB.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step:1 Get/Read the length of sequence x[n] to N.
- Step: 2 Get/Read the samples of sequence x[n] to x.
- Step:3 Find the length of x and store it in N1.
- Step:4 If N1< N then pad N-N1 number of zeros to x.
- Step:5 Initialize the time vector n from 0:N-1.
- Find the FFT of the given sequence and store it in y. Step: 6
- Determine the magnitude of y and store it in 'my'. Step:7
- Step:8 Determine the phase of y and store it 'py'.
- Step:9 Plot the Graphs of x, my and py.

Procedure:

1. Click on the MATLAB icon on the desktop (or go to Start – All programs and click on MATLAB) to get into the Command Window.

TECHNO

- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- VIJAYAWADA 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

enter the length of sequence: 8 enter the samples of sequence: [1 2 3 4 5 6 7 8]

Output:

FFT of the given sequence x[n] is Columns 1 through 4 36.0000 + 0.0000i -4.0000 + 9.6569i -4.0000 + 4.0000i -4.0000 + 1.6569i Columns 5 through 8 -4.0000 + 0.0000i -4.0000 - 1.6569i -4.0000 - 4.0000i -4.0000 - 9.6569i

6. POWER DENSITY SPECTRUM OF GIVEN SIGNAL

Aim: To determine the power spectral density of a given input signal using MATLAB.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step : 1 Get/Read the number of samples of x[n] to N.
- Step: 2 Get/Read the frequency of sinusoidal signal to 'f'.
- Step: 3 Define a time vector n from 0:N-1.
- Step : 4 Determine x using $x[n] = sin(2\pi fn/N)$.
- Step : 5 Determine autocorrelation of x and store it in 'y'.

Step: 6 Find the FFT of 'y' and store it in 'sx'.

- Step: 7 Determine the magnitude of 'sx' and store it 'msx'.
- Step : 8 Define the frequency vector f from 0:N-1.
- Step : 9 Plot the Graphs of 'x' and 'msx'.

Procedure:

1. Click on the MATLAB icon on the desktop (or go to Start – All programs and click on MATLAB) to get into the Command Window.

TECHNOLOGY

- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

enter the length of sequence: 128 enter the frequency of sinusoidal: 10

Output:

Result: Hence the power spectral density of a sinusoidal signal is determined and its spectrum is observed using MATLAB.

7. DESIGN OF IIR LOW PASS DIGITAL FILTER

Aim: To design and plot the frequency response of IIR low pass digital filter using Butterworth & Chebyshev approximations.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step: 1 Get/Read the pass band frequency of LPF to 'fp'.
- Step: 2 Get/Read the stop band frequency of LPF to 'fs'.
- Step: 3 Get/Read the pass band ripple of LPF to 'rp'.
- Step: 4 Get/Read the stop band ripple of LPF to 'rs'.
- Step : 5 Get/Read the sampling frequency to 'f'.
- Step : 6 Normalize the pass band and stop band frequencies using wp = 2*fp/f; ws = 2*fs/f;
- Step : 7 Define the frequency vector 'w' from $0:\pi$.
- Step : 8 Determine the order 'n' and cut off frequency 'wn' of the filter using Butterworth approximation.
- Step : 9 Determine the coefficients of digital filter [b, a] using the order 'n' and cutoff frequency 'wn'. අදුරුවුණුරු
- Step: 10 Determine the frequency response of low pass filter 'H' using the coefficients [b, a].
- Step: 11 Determine the magnitude of H in dB and store it in 'mag'.
- Step: 12 Determine the phase of H and store it in 'phase'.
- Step: 13 Plot the Graphs of 'mag' and 'phase'.
- Step: 14 Repeat the steps 8 to 13 for Chebyshev type I & type II approximations.

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.

6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

enter the passband ripple: 3 enter the stopband ripple: 50 enter the passband frequency: 1000 enter the stopband frequency: 2000 enter the sampling frequency: 10000

Output:

Result: Hence an IIR low pass digital filter is designed and its frequency response is observed using MATLAB.

8. DESIGN OF IIR HIGH PASS DIGITAL FILTER

Aim: To design and plot the frequency response of IIR high pass digital filter using Butterworth & Chebyshev approximations.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step: 1 Get/Read the pass band frequency of HPF to 'fp'.
- Step: 2 Get/Read the stop band frequency of HPF to 'fs'.
- Step: 3 Get/Read the pass band ripple of HPF to 'rp'.
- Step: 4 Get/Read the stop band ripple of HPF to 'rs'.
- Step: 5 Get/Read the sampling frequency to 'f'.
- Step : 6 Normalize the pass band and stop band frequencies using wp = 2*fp/f; ws = 2*fs/f;
- Step : 7 Define the frequency vector 'w' from $0:\pi$.
- Step : 8 Determine the order 'n' and cut off frequency 'wn' of the filter using Butterworth approximation.
- Step : 9 Determine the coefficients of digital filter [b, a] using order 'n' and cutoff frequency 'wn'.
- Step: 10 Determine the frequency response of the high pass filter 'H' using the coefficients [b, a].
- Step: 11 Determine the magnitude of H in dB and store it in 'mag'.
- Step: 12 Determine the phase of H and store it in 'phase'.
- Step: 13 Plot the Graphs of 'mag' and 'phase'.
- Step : 14 Repeat the steps 8 to 13 for Chebyshev type I & type II approximations.

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- **6.** The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

enter the passband ripple: 2 enter the stopband ripple: 50 enter the passband frequency: 2000 enter the stopband frequency: 1000 enter the sampling frequency: 5000

Output:

Result: Hence an IIR high pass digital filter is designed and its frequency response is observed using MATLAB.

9. DESIGN OF FIR LOW PASS DIGITAL FILTER

Aim: To design and plot the frequency response of FIR low pass digital filter using windowing technique.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

Step:1	Get/Read the pass band frequency of LPF to 'fp'.
Step:2	Get/Read the stop band frequency of LPF to 'fs'.
Step:3	Get/Read the pass band ripple of LPF to 'rp'.
Step:4	Get/Read the stop band ripple of LPF to 'rs'.
Step:5	Get/Read the sampling frequency to 'f'.
Step:6	Normalize the pass band and stop band frequencies using
Step : 7	wp = $2*fp/f$; ws = $2*fs/f$; Define the frequency vector 'w' from $0:\pi$.
Step:8	Determine the order 'n' of the filter using
Step : 9	num = -20*log10(sqrt(rp*rs))-13; dem = 14.6*(fs-fp)/f n = ceil(num/dem) Make sure that the order of the filter is always odd.
	if(rem(n,2)~=0) $\langle \rangle$
	else n1=n; n=n-1; else n1=n+1; VIJAYAWADA
Step : 10	Determine the coefficients 'b' of digital LPF using Rectangu

- igular window and fir1 functions.
- Step : 11 Determine the frequency response of low pass filter 'H' using the coefficients 'b'.
- Step: 12 Determine the magnitude of H in dB and store it in 'mag'.
- Step: 13 Determine the phase of H and store it in 'phase'.
- Step: 14 Plot the Graphs of 'mag' and 'phase'.
- Repeat the steps 10 to 14 for triangular, Hanning, Hamming, Blackman and Step : 15 Kaiser window functions.

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.

SIDDHARTHA INS TIT

- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

enter passband ripple: 0.02 enter the stopband ripple: 0.01 enter passband frequency: 500 enter stopband frequency: 2000 enter sampling frequency: 8000

Output:

Result: Hence an FIR low pass digital filter is designed and its response is observed using MATLAB.

10. DESIGN OF FIR HIGH PASS DIGITAL FILTER

Aim: To design and plot the frequency response of FIR high pass filter using windowing technique.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step: 1 Get/Read the pass band frequency of HPF to 'fp'.Step: 2 Get/Read the stop band frequency of HPF to 'fs'.
- Step : 3 Get/Read the pass band ripple of HPF to 'rp'.
- Step: 4 Get/Read the stop band ripple of HPF to 'rs'.
- Step: 5 Get/Read the sampling frequency to 'f'.
- Step: 6 Normalize the pass band and stop band frequencies using

wp = 2*fp/f; ws = 2*fs/f;

- Step : 7 Define the frequency vector w from $0:\pi$.
- Step: 8 Determine the order 'n' of the filter using num=-20*log10(sqrt(rp*rs))-13; dem=14.6*(fp-fs)/f n=ceil(num/dem)
- Step : 9 Make sure that the order of the filter is always odd.
- Step : 10 Determine the coefficients 'b' of digital HPF using Rectangular window and fir1 functions.
- Step: 11 Determine the frequency response of high pass filter 'H' using the coefficients 'b'.
- Step: 12 Determine the magnitude of H in dB and store it in 'mag'.
- Step: 13 Determine the phase of H and store it in 'phase'.
- Step: 14 Plot the Graphs of 'mag' and 'phase'.
- Step : 15 Repeat the steps 10 to 14 for triangular, Hanning, Hamming, Blackman and Kaiser Window functions.

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.

6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

enter passband ripple: 0.02 enter the stopband ripple: 0.01 enter passband frequency: 5000 enter stopband frequency: 1000 enter sampling frequency: 20000

Output:

Result: Hence an FIR high pass digital filter is designed and its Frequency Response is observed using MATLAB.

11. LINEAR CONVOLUTION

Aim: To perform linear convolution of given sequences using TMS320C6713 DSP Processor.

Equipment Required:

PC loaded with Code Composer Studio software, TMS320C6713 DSP Starter kit

Algorithm:

- Step: 1 Get/Read the length of input sequence to N1.
- Step : 2 Get/Read the length of impulse response to N2.
- Step : 3 Get/Read Input Signal Samples to x[n].
- Step : 4 Get/Read Impulse Response samples to h[n]
- Step : 5 Calculate the length of output sequence N using N=N1+N2-1 DHARTHA INS T/T_{res}
- Step : 6 Perform Linear convolution using the formula

$$y[n] = \sum_{k=-\infty}^{\infty} x(k) * h(n-k)$$

- Step : 7 Display the values of y[n].
- Step : 8 Plot the graphs for x[n], h[n] and y[n].

Procedure:

- 1. Open CCS Version 6.1.1.
- 2. Go to File menu and select new CCS project.
- 3. Create new project with following specifications

Project \rightarrow New CCS Project Target: C671X Electing point DSP

Ô

Target: C671X Floating-point DSPTMS320C671XConnection: Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator

TECHNOLOG

Ô

÷.		Nev	v CCS Pro	ject		- 🗆 X
CCS Project ② A project w	vith tha	t name already exists in th	e workspace	e		
Target: Connection:	C6715 Spectr	Floating-point DSP rum Digital DSK-EVM-eZds	∽ sp onboard	TMS320C6713 USB Emulator	¥	♥ Verify
💼 C67XX (0 Project nan	C6000] ne:	linearpro				
Use defa	ult loca cation: ersion:	ation C:\Users\dsp\workspace TI v7.4.14	_v6_1\linear	pro	~	Browse More
 ▶ Advanced ♥ Project te 	d settin mplate	gs is and examples				
type filter t	text Empty Pro Empty Empty Empty sic Exar Hello	ojects r Project r Project (with main.c) r Assembly-only Project r RTSC Project nples World	Crea the an e	ates an empty project f selected device. The pr mpty 'main.c' source-	ully ini roject v file.	itialized for vill contain
?		< Back	N	ext > Finish	١	Cancel

- 4. Select empty project with main.c and finish.
- 5. Create a new Source file

File \rightarrow New \rightarrow Browse the Source folder \rightarrow give file name & Save (Eg: sum.c)

19 C	New Source File	_ □	×
Source File Create a new s	source file.	C	
Source folder:	linearpro	Browse	·
Source file:	pro1.c		
Template:	Default C++ source template V	Configu	re
?	Finish	Cance	el 📃

- 6. Write C program and save it. DHARTHA INS TIT
- 7. Create New Target configuration file with extension .ccxml
 - File \rightarrow New \rightarrow Target configuration file

*	New Target Configura	tion	- 🗆 ×
Target Cor	nfiguration		
Create a ne	ew Target Configuration file.		
File name:	NewTargetConfiguration.ccxml		
✓ Use sha	red location		
Location:	C:/Users/dsp/ti/CCSTargetConfigurations	File System	Workspace
?	Γ	Finish	Cancel
	L		

Connection: Spectrum Digital DSK - EVM-eZdsp onboard USB Emulator

DdSIC							^
General Setup This section des	scribes the ge	neral configuratio	on about the t	arget.			Advanced Setup
Connection	Spectrum Digital DSK-EVM-eZdsp onboard USB Emulator						Target Configura
Board or Device	e type filter t	text					Save Configuration
	DSK55	509A 510				^	Save
	DSK64	116 155					Test Connection
	DSK67	713					To test a connect configuration file
		oper's Kit - Reson	ant DC/DC (F2	2808)			Test Connection
<		502		_			Alternate Commi ¥
Basic Advanced	Source						
Build the pr	roject.	Sel	DHART	HA INS T	TU ITI TTU ITI erute ibcartilis men	e 🕒 @	
					-		
lo debug context	- 🕀 😭 😫	5) 21 61 🔚 R	🛃 🖳 🕇 📑		Problems 28		Check for 0 errors
lo debug context	ame			• • • • • • • • • • • • • • • • • • •			Bernurre
lo debug context Console % DT Build Console [im -diag_wrap=off - -rom_model -o "1 1"libc.a" Linking> Finished buildin	earpro] -xml_link_in incarpro.out g target: li	fo="linearpro_l: " "./prol.obj" nearpro.out'	inkInfo.xml" "/C6713.cmd	^ De	scription		

9. Launch the target configuration.

Select Target configuration \rightarrow Right click \rightarrow Launch target configuration

- 10. Click on Connect Target on menu bar.
- 11. Load the program

Run \rightarrow Load Programme \rightarrow Browse .out file

- 12. Run the program.
- 13. Observe the output in the console window (to observe the graph, go to expressions, right click on the expression and select the graph).

Input:

enter the length of first sequence: 6 enter the length of second sequence: 4 enter the samples of first sequence x(n): {1,2,3,4,5,6} enter the samples of second sequence h(n): {1,2,3,4}

Output:

28

Result: Hence linear convolution of given sequences is performed and output is observed using TMS320C6713 DSP starter kit. DHARTHAINSTIC

12. CIRCULAR CONVOLUTION

Aim: To perform circular convolution of given sequences using TMS320C6713 DSP Processor.

Equipment Required:

PC loaded with Code Composer Studio software, TMS320C6713 DSP Starter kit

Algorithm:

- Step: 1 Get/Read the length of input sequence to N1.
- Step : 2 Get/Read the length of impulse response to N2.
- Step : 3 Get/Read the Input Signal Samples to x[n].
- Step : 4 Get/Read the Impulse Response samples to h[n]
- Step : 5 Calculate the length of output sequence N using N=N1+N2-1
- Step: 6 If N1 > N2, pad N1-N2 zeros to h[n] else pad N2-N1 zeros to x[n].
- Step: 7 Perform Circular convolution using the formula $y[n] = \sum_{m=0}^{N-1} x(m) * (h(n-m))N$
- Step : 8 Display the values of y[n].
- Step: 9 Plot the graphs for x[n], h[n] and y[n].

Procedure:

- 1. Open Code Composer Studio 6.1.1
- 2. Create new project with following specifications

Project \rightarrow New CCS Project

Target: C671X Floating -point DSP

TMS320C671X

- Connection: Spectrum Digital DSK EVM-eZdsp onboard USB Emulator
- 3. Select empty project with main.c and finish.
- 4. Create a Source file

File \rightarrow New \rightarrow Browse the Source folder \rightarrow give file name & Save (Eg: sum.c)

VIJAYAWADA

- 5. Write C program and save it.
- 6. Create New Target configuration file with extension .ccxml

File \rightarrow New \rightarrow Target configuration file

Connection: Spectrum Digital DSK - EVM-eZdsp onboard USB Emulator

Device type: DSK6713

Save

- 7. Build the project.
- 8. Launch the target configuration.

Select Target configuration \rightarrow Right click \rightarrow Launch target configuration

- 9. Click on Connect Target on menu bar.
- 10. Load the program

Run \rightarrow Load Programme \rightarrow Browse .out file

- 11. Run the program.
- 12. Observe the output in the console window

(to observe the graph, go to expressions, right click on the expression and select the graph).

ఆత్తపిపోభక

TECHNOLOGY

🖹 🚮 📑 🚍 🖛 🔂 🖛 🗗

Ô

Input:

Enter the length of first sequence: 3 Enter the length of second sequence: 3 Enter the samples of first sequence: {1 2 3} Enter the samples of second sequence: {1 2 3}

Output:

Circular convolution of x(n) and h(n) is: 13 13 10

```
Console &
NewTargetConfiguration.ccxml:CIO
Enter the length of the first sequence
Enter the length of the second sequence
Enter the first sequence
1 2 3
Enter the second sequence
1 2 3
The circular convolution is
13 13 10
```

31

Result: Hence circular convolution of given sequences is performed and output is observed using TMS320C6713 DSP starter kit.

13. GENERATION OF SINE WAVE AND SQUARE WAVE

Aim: To generate sine and square waves using TMS320C6713 DSP Processor. **Equipment Required:**

PC loaded with Code Composer Studio software, TMS320C6713 DSP Starter kit

Algorithm for Sine wave generation

- Step : 1 Get/Read the frequency of the sinusoidal signal to F.
- Step : 2 Get/Read the number of samples to N.
- Step : 3 Define time scale for a sine signal (Ex: 0<t<100)
- Step : 4 Generate sinusoidal signal using
 - y[t]=sin(2*pi*f*t/N);
- Step : 5 Plot the graph of 'y'.

Algorithm for Square wave generation

- Step: 1 Get/Read the time period of square signal to t.
- Step : 2 Define time scale i for a square signal. (Ex: 0<i<100)
- Step : 3 Generate square wave using if((i*2)/t)%2==0 y[i]= 1 ; else y[i]= -1;

Step : 4 Plot the graph of y.

Procedure:

- 1. Open Code Composer Studio 6.1.1
- 2. Create new project with following specifications

Project \rightarrow New CCS Project

Target: C671X Floating -point DSP TMS320C671X

Connection: Spectrum Digital DSK - EVM-eZdsp onboard USB Emulator

Ô

- 3. Select empty project with main.c and finish.
- 4. Create a Source file

File \rightarrow New \rightarrow Browse the Source folder \rightarrow give file name & Save (Eg: sum.c)

5. Write C program and save it.

6. Create New Target configuration file with extension .ccxml

File \rightarrow New \rightarrow Target configuration file

Connection: Spectrum Digital DSK - EVM-eZdsp onboard USB Emulator Device type: DSK6713

Save

- 7. Build the project.
- 8. Launch the target configuration.

Select Target configuration \rightarrow Right click \rightarrow Launch target configuration

- 9. Click on Connect Target on menu bar.
- 10. Load the program

Run \rightarrow Load Programme \rightarrow Browse .out file

- 11. Run the program.
- 12. Observe the output in the console window NS 7/7/

Ô

(to observe the graph, go to expressions, right click on the expression and select

TECHNO

the graph).

Input:

enter the frequency: 10 enter the no. of samples: 512 $\stackrel{\text{\tiny E}}{=}$

Output:

Input:

enter the time period: 10

Output:

Result: Hence sine wave and square waves are generated and observed using TMS320C6713 DSP starter kit.

SIDDHARTHA INS TIT

14. IMPLEMENTATION OF INTERPOLATION AND DECIMATION

Aim: To implement decimation and interpolation on a given signal/sequence.

Equipment Required:

PC loaded with MATLAB software

Algorithm for Interpolation:

- Step: 1 Get/Read the amplitude of first sinusoidal signal to a1.
- Step: 2 Get/Read the frequency of first sinusoidal signal to f1.
- Step : 3 Get/Read the amplitude of second sinusoidal signal to a2.
- Step : 4 Get/Read the frequency of second sinusoidal signal to f2.
- Step : 5 Get/Read the sampling to Fs.
- Step: 6 Get/Read the up sampling factor to 'i'.
- Step: 7 Define time vector 't' from 0:1/Fs:1.57/
- Step: 8 Generate the signal 'x' using $x=alcos(2\pi flt) + a2cos(2\pi f2t)$
- Step: 9 Perform interpolation on 'x' using interpolation factor 'i' and store it in 'y'.
- **Step : 10** Plot the graphs of original signal 'x' and interpolated signal 'y'.

Algorithm for Decimation:

- Step: 1 Get/Read the amplitude of first sinusoidal signal to a1.
- Step: 2 Get/Read the frequency of first sinusoidal signal to f1.
- Step: 3 Get/Read the amplitude of second sinusoidal signal to a2.
- Step : 4 Get/Read the frequency of second sinusoidal signal to f2.
- Step : 5 Get/Read the sampling to Fs.
- Step: 6 Get/Read the down sampling factor to 'd'.
- Step : 7 Define time vector 't' from 0:1/Fs:1.
- Step: 8 Generate the original signal 'x' using
 - $x = a1\cos(2\pi f_1t) + a2\cos(2\pi f_2t)$
- Step: 9 Perform decimation on 'x' using decimation factor 'd' and store it in 'y'.
- Step: 10 Plot the graphs of original signal 'x' and decimated signal 'y'.

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Input:

Enter the amplitude of first Sinusoidal: 1.5 Enter the frequency of first Sinusoidal: 50 Enter the amplitude of second Sinusoidal: 1 Enter the frequency of second Sinusoidal: 100 Enter the sampling frequency: 1000 DHARTHA INS 7 Enter Up sampling factor: 4 P04 > 2 **Output:** input signal 4 signal amplitude 2 0 -2 0 10 15 20 25 5 Discrete time, nT interploated signal 4 signal amplitude 2 0 -2 ⊑ 0 10 20 30 70 80 90 100 40 60 50 Discrete time, 4 x nT

Input:

Enter the amplitude of first Sinusoidal: 1.5 Enter the frequency of first Sinusoidal: 20 Enter the amplitude of second Sinusoidal: 1 Enter the frequency of second Sinusoidal: 40 Enter the sampling frequency: 1000 Enter Down sampling factor: 4

Output:

Result: Hence decimation and interpolation are implemented on a signal and observed the outputs using MATLAB.

15. CONVERSION OF CD DATA TO DVD DATA

Aim: To convert CD data into DVD data using MATLAB.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step: 1 Get/Read the frequency of CD signal 44.1 KHz to 'f'c'.
- Step: 2 Define time vector 't'.
- Step : 3 Generate the signal 'x' using $x = sin(2\pi f_c t)$.
- Step : 4 Plot the original CD signal.
- Step : 5 Set interpolation factor as i=13
- Step: 6 Set decimation factor as d=5.THA INS T/2
- Step: 7 Use resample function to obtain DVD signal 'y'.
- Step: 8 Plot the graphs of CD signal 'x' and DVD signal 'y'.

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.
- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Output:

16. SUM OF SINUSOIDAL SIGNALS

Aim: To generate and plot the sum of sinusoidal signals using MATLAB.

Equipment Required:

PC Loaded with MATLAB software

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.

SIDDHARTHA INS TI

- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

TECHNOLOGY

Algorithm:

- Step : 1 Define time vector 't' from $0:2\pi$.
- Step : 2 Generate the signal 'y1' using y1 = sin(t).
- Step : 3 Generate the signal 'y2' using $y2=\frac{1}{2}sin(3t)$.
- Step : 4 Generate the signal 'y3' using $y3 = \frac{1}{-}sin(5t)$.
- Step : 5 Generate the signal 'y4' using $y4 = \frac{1}{2}sin(7t)$.
- Step : 6 Generate the signal 'y5' using $y5 = \frac{1}{-}sin(9t)$.
- Step : 7 Obtain the signal 'y' using y=y1+y2+y3+y4+y5.
- Step: 8 Plot the graphs of y1, y2, y3, y4, y5 and 'y'.

Output:

VIJAYAWADA

DESIGN OF M-POINT MOVING AVERAGE FILTER

Aim: To design and plot the output of M-point Moving Average Filter using MATLAB.

Equipment Required:

PC loaded with MATLAB software

Algorithm:

- Step : 1 Define a time vector n from 1:50.
- Step : 2 Generate a signal 's' using $s = 2n(0.9)^n$.
- Step: 3 Generate a random noise signal 'd' with same length as that of 's'.
- Step : 4 Obtain a corrupted signal 'p' using p = s+d.
- Step: 5 M- point moving average filter is obtained by

 $\mathbf{x}_{\text{avg}} = \frac{1}{M} \sum_{i=1}^{M} \mathbf{x}(i) \text{ HARTHA INS } \mathcal{T}_{i}$

Use For loop to determine the above summation.

Step : 6 Plot the graphs of original signal 's', noise signal 'd', corrupted signal 'p' and filtered signal 'xavg'.

Procedure:

- 1. Click on the MATLAB icon on the desktop (or go to Start All programs and click on MATLAB) to get into the Command Window.
- 2. Type 'edit' in the MATLAB prompt '>>' that appears in the Command window.

Vijayawada

- 3. Write the program in the 'Edit' window and save it in 'M-file'.
- 4. Run the program.
- 5. Enter the input in the command window.
- 6. The result is displayed in the Command window and the graphical output is displayed in the Figure Window.

Output:

