VERILOG HDL

Course Code	20SA8754	Year	IV	Semester	
Course Category	Skill advanced	Branch	ECE	Course Type	LAB
	course				
Credits	2	L-T-P	1-0-	Prerequisites	Digital
			2		Circuits
Continuous	0	Semester End	50	Total Marks	50
Internal		Evaluation			
Evaluation					

	Course Outcomes						
Upon	Upon successful completion of the course, the student will be able to						
CO1	Understand the basics of Hardware Description Languages, Program structure and						
	basic language elements of Verilog (L2)						
CO2	Analyze various Verilog descriptions for Combinational circuits (L4)						
CO3	Simulate arithmetic logic circuits using Verilog (L3)						
CO4	Model various Verilog descriptions for Sequential circuits.(L3)						
CO5	Make an effective report based on experiments.						

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)														
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation														
* - Average value indicates course correlation strength with mapped PO														
COs	PO	PO1	PO1	PO1	PSO	PSO								
COS	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	1				1								1	
CO2		2			2				2				2	
CO3	1				1				2				1	
CO4	3				3				2				3	
CO5										2				
Average *														
(Rounde d to	2	2			2				2	2			2	
nearest integer)														

	Syllabus					
Expt. No.	Contents					
Si	Simulate the internal structure of the following Circuits using VERILOG					
I	Verilog Description for all two input basic gates.	CO1				
II	Verilog Description for three/four input Logical operations(two experiments)	CO2				
III	Verilog Description for Arithmetic operations(Three experiments)	CO3				
IV	Verilog Description for multiplexers using dataflow/behavioural method (two experiments)	CO2				
V	Verilog Description for flip-flops	CO4				
VI	Verilog Description for ripple counters(two experiments)	CO4				

VII	Verilog Description for synchronous counters(two experiments)	CO4
-----	---	-----

❖ Minimum 10 experiments to be conducted covering all the topics

Learning Resources:						
Text Books:						
1. Samir Palnitkar, Verilog HDL, Pearson Education						
2. J. Bhasker, Verilog HDL Synthesis: A Practical Primer						
References:						
1. Stephen Brown and Zvonko Vranesic - Fundamentals of Digital Logic with Verilog, TMH.						
e-Resources:						