GLOBAL POSITIONING SYSTEMS

Course Code	20EC4703A	Year	IV	Semester	I
Course Category	PE	Branch	ECE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Satellite communication
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes					
Upon successful completion of the course, the student will be able to					
CO1	Understand the characteristics of GPS signals and transceivers (L2).				
CO2	Illustrate different types of GPS errors (L3)				
CO3	Analyse various standard formats of GPS (L4)				
CO4	Differentiate GPS applications (L4)				

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)
Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

integer)

* - Average value indicates course correlation strength with mapped PO PO1 PO1 PO1 **PSO PSO COs** 2 4 7 8 9 1 3 5 6 0 2 2 1 1 2 2 2 **CO1** CO₂ 3 3 2 CO3 2 3 3 3 3 CO4 3 Average (Rounde 3 3 3 3 3 3 d to nearest

	Syllabus					
Unit No.	Contents	Mapped CO				
I	Introduction to GPS: Overview of GPS, GPS segments, GPS satellite generations, current GPS satellite constellation, control sites.	CO1, CO4				
II	GPS Details: GPS signal structure, GPS modernization, types of GPS receivers, time systems, pseudo range measurements, Carrier-phase measurements and cycle slips.	CO1, CO2				
III	GPS errors and Biases: GPS ephemeris errors, Selective availability, satellite receiver and clock error, multipath error, ionospheric error, tropospheric error	CO1, CO2				
IV	GPS standard formats: RINEX, NGS-SP3, RTCM SC-104 and NMEA 0183.	CO1, CO3				
V	GPS Applications: GPS for utilities industry, forestry and natural resources, precision farming.	CO1, CO4				

Learning Resources

Text Books

- 1. Ahmed EI-Rabbany- Introduction to GPS the global positioning system: Artech House Boston. London.
- 2. Christopher J. Hegarty (eds), Elliott D. Kaplan- Understanding GPS: Principles and Applications, 2nd Ed.- Artech House Boston. London.

Reference Books

1. Fundamentals of Global Positioning System Receivers: A Software Approach James Bao-Yen Tsui Copyright @ 2000 John Wiley & Sons, Inc.

e- Resources & other digital material

1. https://ocw.mit.edu/courses/12-540-principles-of-the-global-positioning-system-spring-2012/
