Advanced C and C++

Course	20EC2701C	Year	IV	Semester	I
Code					
Course	Open	Branch	ECE	Course	Theory
Category	Elective-III			Type	
Credits	3	L-T-P	3-0-0	Prerequisite	Basic
				S	knowledge
					of C
					Language.
Continuous	30	Semester	70	Total	100
Internal		End		Mark	
Evaluation:		Evaluation:		s:	

	Course Outcomes					
Upon s	uccessful completion of the course, the student will be able to					
CO1	Understand the basic principles and operations of data structures. (L2)					
CO2	Apply correct Data Structure for storing Data in the application. (L3)					
CO3	Apply object oriented concepts to develop solution for the given problem. (L3)					
CO4	Analyze the given scenario and choose appropriate generic programming aspects to develop large computer programs and applications that are part of bigger projects. (L4)					

Mapping of course outcomes with Program outcomes (CO/ PO/PSO Matrix)

Note: 1- Weak correlation 2-Medium correlation 3-Strong correlation

* - Average value indicates course correlation strength with mapped PO

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	P O 12	PS O1	PS O2
CO1	3													
CO2		3	3		2							2	2	
CO3		3	3		2							2	2	
CO4		3	3	2	2							2	2	
Average* (Rounded to nearest integer)	3	3	3	2	2							2	2	

	Syllabus	
Unit	Contents	Mapped
No.		CO
I	DATA STRUCTURES IN C - PART-I	CO1,CO2
	Introduction, Algorithms, Time Complexity, Linear & Non-	
	Linear Data Structures, Arrays. Stacks & Queues implemented	
	using Arrays.	

II	DATA STRUCTURES IN C - PART-II	CO1,CO2
	Linked Lists, Stacks & Queues implemented using Linked Lists,	ŕ
	Introduction to Trees, Inserting, Traversing Trees. Searching a	
	node in Tree, Removing a Node from Tree, Destroying Tree.	
III	C++ PART-I	CO3,CO4
	Introduction to OOP concepts, Encapsulation, Class, std	
	namespace, using statement, private, public & protected member	
	access specifiers. Input/output using stream classes. Objects,	
	Inheritance & its types. Derivation types.	
IV	C++ PART-II	CO3,CO4
	Polymorphism introduction, Function overloading. Constructors	
	and Destructor, Default arguments. const and static data &	
	function members. Namespaces. Reference variables. Exception	
	handling, Dynamic allocation of memory. Copy constructor.	
V	C++ PART-III	CO3,CO4
	Scope of variables. Nested class. Friend functions. Inheritance.	
	Containership, Runtime Polymorphism using Virtual functions,	
	Operator overloading. Text and binary files. Template functions	
	and classes. Formatting streams, variadic Templates.	

	Learning Resources
, r	Text Books
1	1 Herbert Schildt The Complete Reference C++ 4th Ed. TMH 2000

- 1. Herbert Schildt, The Complete Reference C++, 4th Ed., TMH, 2000.
- 2. Yashavant Kanetkar, Let Us C++, BPB Publication
- 3. Yashavant Kanetkar, Data Structures Through C, BPB Publication

Reference Books

- 1. 1. Al Stevens and Clayton Walnum, Standard C++ Bible, Hungry Minds, Inc., 2000.
- 2. Bjarne Stroustrup, Programming: Principles and Practice Using C++, Addison-Wesley Publications
- 3. E. Balaguruswamy: C Programming and Data Structures, The McGraw Hill Companies.