WECHANICS OF COMI OSITE MATERIALS									
CourseCode	20ME6702	Year	IV	Semester	Ι				
Course Category	HONORS	Branch	ME	Course Type	Theory				
Credits	4	L - T - P	3 - 1 - 0	Prerequisites	Material Science and Metallugy				
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100				

MECHANICS OF COMPOSITE MATERIALS

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Understand the features of Composite materials, elastic	Understand,	L2	1,2,3,4,5
	parameters at micro and macro level and related failures.	Communication		1,2,0,1,0
CO2	Apply constitutive equations of composite materials and	Apply	L3	2,3,4
	quantify mechanical behavior at micro and macro levels	r ippiy		2,3,1
CO3	Determine stresses and strains relation in composites materials and understand the failure analysis of the composite	Apply	L3	5

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High, 2: Medium, 1:Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1									3	1
CO2	3	3	1	1									3	1
CO3	3	3	1	1									3	1

Syllabus										
Unit	Contents									
	INTRODUCTION TO COMPOSITE MATERIALS									
I	Introduction, Classification: Polymer Matrix Composites, Metal Matrix									
	Composites, Ceramic Matrix Composites, nature-made composites, and									
	applications. Fibres- Glass, Silica, Kevlar, carbon, boron, silicon carbide,									
	and born carbide fibres. Particulate composites, Polymer composites,									
	Thermoplastics, Thermosetts, Metal matrix and ceramic composites.									
	ELASTIC BEHAVIOR OF COMPOSITE LAMINA USING									
	MICROMECHANICS									
II	Introduction, Strength of Materials Approach, Semi- Empirical Models,									
	Elasticity Approach, Volume and Mass Fractions, Density, and Void									
	Content, Evaluation of the Four Elastic Moduli, , Ultimate Strengths of a									
	Unidirectional Lamina									
	ELASTIC BEHAVIOR OF COMPOSITE LAMINA USING									
ш	MACROMECHANICS									
111	Introduction, Definitions: Stress, Strain, Elastic Moduli, Strain Energy,									
	stress strain relations for general anisotropic materials, specially									
	orthotropic materials, transversally isotropic materials, orthotropic									

	material under plane stress and isotropic materials, relations between mathematical and engineering constants.			
IV	ELASTIC BEHAVIOR OF MULTIDIRECTIONAL LAMINATES Basic assumptions, laminate code, strain-displacement relations, stress-			
	strain relations of a layer within a laminate, force and moment resultants, Laminate stiffness and laminate compliance, symmetric laminates, balance laminates			
	FAILURE, DESIGN OF LAMINA AND LAMINATES			
V	Lamina Strength Failure Theories of an Angle Lamina: Maximum Stress	CO3		
	Failure Theory Strength Ratio, Failure Envelopes, Maximum Strain Failure Theory, Tsai–Hill Failure Theory, Tsai–Wu Laminate: Introduction,			
	Special Cases of Laminates, and Failure Criterion for a Laminate, and			
	Design of a Laminated Composite			

Learning Resources

Text books	
1.Engineering Mechanics of Composite Materials, (2nd edition), by Isaac and M Daniel, Oxford University	
Press, 2006.	

2. Analysis and performance of fibre Composites, (Second Edition), by B. D. Agarwal and L. J. Broutman, John Wiley & sons, NewYork, New York, 1990

Reference books

1. Mechanics of Composite Materials, (3ed edition), by R. M. Jones, Mc Graw Hill Company, New York, 2006.

2. Analysis of Laminated Composite Structures, by L. R. Calcote, Van Nostrand Rainfold, New York, 1969.

3. Mechanics of Composite Materials, (Second Edition), by Autar K. Kaw, CRC, 2010