CourseCode	20ME6504	Year	III	Semester	Ι				
Course Category	HONORS	Branch	ME	Course Type	Theory				
Credits	4	L - T - P	3 - 1 - 0	Prerequisites	MP, MCMT				
Continuous Internal Evaluation	30	Semester End Evaluation	70	Total Marks	100				

MANUFACTURING METHODS IN PRECESSION ENGINEERING

Course Outcomes: Upon successful completion of the course, the student will be able to

	Statement	Skill	BTL	Units
CO1	Illustrate various precision manufacturing methods and	Understand	L2	1
	documentation for precision equipment	Communication	LZ	1
CO2	Explain Various accuracies required in machines and	Apply,	L3	2
	errors in numerical positioning	Communication	LS	2
CO3	Apply standards and applications of Lasers in Precision	Apply,	L3	2
	measuring systems.	Communication	LS	5
CO4	Identify various in-process or In-situ process	Apply,	L3	4
	measurement and Optical features of measurement	Communication	LS	4
CO5	Select various Nano positioning systems and Servo	Apply,	L3	5
	positioning systems in Precision manufacturing.	Communication	L3	5

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3										1	2	3	1
CO2	3	2								1	1	2	3	1
CO3	3	2			2	1	1			1	1	2	3	1
CO4	3	2	1			1	1			1	1	2	3	1
CO5	3	2	1		2	1	1			1	1	2	3	1

Syllabus				
UNIT	Contents	Mapped COs		
I	Introduction to manufacturing and precision engineering: Introduction to manufacturing process, precision engineering and conventional and unconventional machining process, micromachining, Precision machining and finishing operations. Methods of measurements during machining and during assembly Assembly and tolerancing: Documentation for manufacture of precision equipment	CO1		
Π	Concepts of accuracy: Introduction - concept of accuracy of machine tools, spindle and displacement accuracies, Accuracy of numerical control systems, Errors due to numerical interpolation, Displacement measurement system and velocity lags	CO2		
III	Precision measuring systems : Units of length, legal basis for length measurement, traceability, Processing system of nanometer, accuracies	CO3		

	- LASER light source - LASER interferometer, LASER alignment telescope - LASER micrometer-on-line and in-process, measurements of diameter and surface roughness using LASER - Micro holes and topography measurements,	
IV	In processing or in situ measurement : Introduction, In processing or in situ measurement of position of processing point-Post process and on-machine measurement of dimensional features and surface, mechanical and optical measuring systems Straightness and flatness measurement – Optoelectronic Measurement Systems in Metrology, Optoelectronic devices contact and noncontact types.	CO4
v	Nano positioning systems for Nano accuracy & repeatability: Guide systems for moving elements - Servo control systems for tool positioning, Computer aided digital and ultra-precision position control.	CO5

Learning Resources

Text books

1. M. V. Suryaprakash,"Precision Engineering" Narosapublications.

- 2. V C Venkatesh," Precision Engineering" McGRAW HILLPublications
- 3. HiromuNakazawa"Principlesofprecisionengineering"OxfordUniversityPress

ference books

1.Kalpakjian, "Manufacturingengineering&technology", Addison–Wesley, 2ndEdition 2.Debitson A., "Hand book of precisionengineering"

3.J.A.McGeough, "Advancedmethodsofmachining", Chapmanand Hall, London, 1988

4. Jain V. K., "Introduction to micromachining", NarosaPublishers

5.G.Chryssolouris, "Lasermachining-theoryandpractice", SpringerVerlag, NewYork, 1991