PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

III B. Tech – II Semester Natural Language Processing Lab

Course Code	20AM3652	Year	III	Semester	II
Course Category	PCC Lab	Branch	CSE (AI&ML)	Course Type	Practical
Credits	1.5	L-T-P	0-0-3	Prerequisites	Python Programming
Continuous Internal Evaluation	15	Semester End Examination	35	Total Marks	50

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Demonstrate experimental procedures through oral communication and submit comprehensive documentation reports.	L2				
CO2	Implement various NLP pre-processing techniques and deep learning models to solve real-world text processing tasks using tools.	L3				
CO3	Analyze the performance and behavior of different NLP models on various tasks, identifying strengths and weaknesses.	L4				
CO4	Critically evaluate the strengths and limitations of the deep learning models used in the experiments, considering factors like accuracy, robustness, and potential biases.	L5				

	Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3: High,2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2				
CO2					3							3	2	
CO3		3										3		
CO4				3								3		

	Syllabus					
Expt. No.	Contents	Mapped CO				
1.	Explore different Tools: nltk, spaCy, MonkeyLearn, MindMeld, OpenAI, Gensim	CO1				
2.	Preprocess text data by performing text cleaning and normalization techniques, including removing stop words, punctuation marks, special characters, and converting the text to lowercase or uppercase as required.	CO1 to CO4				
3.	Implement a text preprocessing pipeline for a given dataset that includes tokenization, and stemming/lemmatization.	CO1 to CO4				
4.	Implement Bag-of-Words (BoW) and Term Frequency-Inverse Document Frequency (TF-IDF) vectorization techniques for transforming textual data into numerical feature representations suitable for machine learning models.	CO1 to CO4				
5.	Train and visualize word embeddings using Word2Vec and GloVe algorithms.	CO1 to CO4				
6.	Implement attention mechanisms in Recurrent Neural Networks (RNNs)	CO1 to CO4				
7.	Implement and Fine-tuning Bidirectional Encoder Representations from Transformers (BERT) for Named Entity Recognition (NER) on a Specific Domain					
8.	Implement and fine-tune a Transformer model for text classification.	CO1 to CO4				
9.	Implement text generation using GPT	CO1 to CO4				
10.	 Capstone Project-1: Sentiment Analysis of Product Reviews Utilize pre-trained language models like BERT or GPT to build a sentiment analysis system Train and fine-tune the model on a dataset of product reviews Explore techniques for handling imbalanced data and improving sentiment classification performance 	CO1 to CO4				
11.	Capstone Project-2: Question Answering System for Customer Support • Fine-tune a pre-trained BERT or GPT model for question answering • Train the model on a dataset of customer queries and corresponding answers • Deploy the question answering system for customer support applications	CO1 to CO4				
12.	Capstone Project-3: Conversational AI for Chatbots • Develop a conversational AI system using pre-trained language models and attention mechanisms • Train the model on dialogue datasets • Explore techniques for handling context and maintaining coherent conversations	CO1 to CO4				

Learning Resources

Text Books and Reference Books

- 1. Natural Language Processing with Python Analyzing Text with the Natural Language, ToolkitSteven Bird, Ewan Klein, and Edward Loper, 1st edition, 2009, O'Reilly Media.
- 2. Practical Natural Language Processing: A Comprehensive Guide to Build Real World NLP Systems, Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, Harshit Surana, Greyscale Indian Edition, 1st edition, 2020, O'Reilly Media.

e-Resources & other digital material

- 1. http://www.nptelvideos.in/2012/11/natural-languageprocessing.html
- 2. https://www.nltk.org/
- 3. https://huggingface.co/docs/transformers/en/index
- 4. https://nlpprogress.com/