PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (AI & ML)

III B. Tech – II Semester CSE (AI & ML)

Deep Learning Lab

Course Code	20AM3651	Year	III	Semester	П
Course Category	PCC Lab	Branch	CSE (AI & ML)	Course Type	Practical
Credits	1.5	L-T-P	0-0-3	Prerequisites	Python programming
Continuous Internal Evaluation	15	Semester End Examinatio n	35	Total Marks	50

Course Outcomes														
Upon successful completion of the course, the student will be able to														
CO	1 Der subr	Demonstrate experimental procedures through oral communication and submit comprehensive documentation reports.								L2				
CO	O2 Apply CNN, RNN and GANs techniques for developing predictive and descriptive models.								L3					
CO	CO3 Analyze Deep learning problems, and critically assess their performance and limitations.								L4					
CO	4 ^{Eva}	Evaluate the performance of Deep learning models using suitable metrics								L5				
Contribution of Course Outcomes towards achievement of Program Outcomes& Strength of correlations (3: High,2: Medium, 1: Low)														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2									2				
CO2					3							3	2	
CO3		3										3		
CO4				3								3		

	Syllabus	
Expt No	Contents	Mapped CO
1	Implement a simple Neural Network for the MNIST handwritten Digit Recognition Task. Analyze the impact of Different Network Architectures by varying the number of hidden layers and neurons, and compare their performance.	CO1 to CO4
2	Implement a Deep Neural Network for the MNIST handwritten Digit Recognition task. Explore the impact of different activation functions (e.g., sigmoid, tanh, ReLU, leaky ReLU) on the model's performance by training and evaluating the model with each activation function.	CO1 to CO4
3	Build a custom CNN for CIFAR-10 Image Classification. Explore how filter count, size, and padding, along with pooling type (max/average) and size, affect learned representations visualized throughout the network.	CO1 to CO4
4	Evaluate transfer learning for image classification on your custom dataset by comparing fine-tuning a pre-trained LeNet model with feature extraction. Analyze accuracy, precision, and recall to see which approach generalizes better. Additionally, compare the fine-tuned model's performance to a model trained from scratch to understand the benefit of pre-trained knowledge.	CO1 to CO4
5	Implement and train popular CNN Architectures, such as AlexNet and VGGNet on a large-scale Image Classification dataset (e.g., ImageNet, CIFAR-100). Gain a deep understanding of the architectural components and design choices of these models, including the number and types of layers, filter sizes, and connectivity patterns.	CO1 to CO4
6	Implement and train popular CNN architectures, such as GoogLeNet and ResNet on a large-scale image classification dataset (e.g., ImageNet, CIFAR-100). Gain a deep understanding of the architectural components and design choices of these models, including the number and types of layers, filter sizes, and connectivity patterns.	CO1 to CO4
7	Implement Gated Recurrent Unit (GRU), for sequence modeling tasks such as text generation or sentiment analysis.	CO1 to CO4
8	Implement an attention mechanism for sequence-to-sequence tasks, such as machine translation or text summarization.	CO1 to CO4
9	Implement a Generative Adversarial Network (GAN) for Image generation tasks on datasets such as MNIST or CIFAR-10. Gain a Deep understanding of the GAN architecture, including the generator and discriminator networks, the adversarial training process, and the minimax objective function.	CO1 to CO4
10	Capstone Project 1: Image Classification and Object Detection Use convolutional neural networks (CNNs) and transfer learning techniques to build an image classification system for real-world datasets (e.g., medical imaging, satellite imagery, or product recognition). Extend the system to perform object detection and localization tasks.	CO1 to CO4
11	Capstone Project 2: Natural Language Processing (NLP) Develop a sentiment analysis model using recurrent neural networks (RNNs) or attention-based models like BERT to analyze customer reviews or social media data. Build a language translation system using sequence-to-sequence models with attention mechanisms.	CO1 to CO4

12	Capstone Project 3: Generative Adversarial Networks (GANs) for Image Generation Implement various GAN architectures (e.g., DCGANs, CycleGANs) to generate realistic synthetic images, such as faces, landscapes, or product images. Explore applications in data augmentation, creative design, or privacy- preserving data synthesis.	CO1 to CO4
----	---	---------------

Learning Resources						
Text Books						
1. Navin Kumar Manaswi , Deep Learning with Applications Using Python Chatbots and Face,						
Object, and Speech Recognition With TensorFlow and Keras, First Edition, 2018, Apress.						
2. Deep Learning with Python" by François Chollet, Second Edition, 2022, Manning Publications						
Reference Books						
1. Josh Patterson and Adam Gibson, "Deep learning: A practitioner's approach", First Edition, 2017, O'Beilly Media						
 Dive into Deep Learning" by Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, 2024. Cambridge University Press 						
e- Resources & other digital material						
1. <u>https://www.tensorflow.org/tutorials</u>						

2. https://pytorch.org/tutorials/