PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Data Science)

III B. Tech – II Semester CSE (Data Science)

Distributed Systems

Course Code	20DS4601C	Year	Ш	Semester	II	
Course Category	PEC	Branch	CSE	Course Type	Theory	
			(Data Science)			
Credits	3	L-T-P	3-0-0	Prerequisites	Operating Systems, Computer Networks	
Continuous Internal Evaluation		Semest erEnd Examination	70	Total Marks	100	

	Course Outcomes							
Upon successful completion of the course, the student will be able to								
CO1	Describe the fundamental principles, characteristics, and models of distributed systems	L2						
CO2	Apply different approaches and techniques for enabling communication and coordination in distributed systems							
CO3 Apply various middleware technologies in designing Distributed systems								
CO4	Analyze the sharing of data in a distributed environment using various distributed algorithms	L4						

Contribution of Course Outcomes towards achievement of Program Outcomes&														
	Strength of correlations (3: High,2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3													
CO3	3											1		
CO4		3										1		

	Syllabus							
Unit No.	Contents							
	Characterization Of Distributed Systems: Introduction, Examples of Distributed Systems, Trends in Distributed Systems, Focus on Resource Sharing,							
I	Challenges System Models: Introduction, Physical models, Architectural models, Fundamental models.							
	Interprocess Communication: Introduction, The API for the Internet	G01						
	Protocols, External Data Representation and Marshaling, Multicast Communication Network virtualization: Overlay Networks.							
II	Domesta Invagation, Introduction, Doguest Douby Doctorals, Domesta Documenta Call							
	Indirect Communication: Introduction, Group Communication, Publish-Subscribe							
	Systems, Message Queues, Shared Memory Approaches.							
	Operating System Support: Introduction, The Operating System Layer, Protection,							
	Processes and Threads, Communication and Invocation, Operating System							
III	Architecture, and Virtualization at the Operating System Level.	CO3						
	Distributed Objects and Components: Introduction, Distributed Objects, Case study: CORBA, From Objects to Components.							
	Time And Global States: Introduction, Clocks, Events, and Process States,							
	Synchronizing Physical Clocks, Logical Time and Logical Clocks, Global States,	CO1,						
	Distributed Debugging							
IV	Coordination And Agreement: Introduction, Distributed Mutual Exclusion, Elections,							
	Coordination and Agreement in Group Communication, Consensus and related							
	problems Distributed Transactions: Introduction, Flat and Nested Distributed transactions,							
	Atomic Commit Protocols, Concurrency Control in Distributed Transactions Distributed Deadlocks, Transaction Recovery							
V	Replication : Introduction, System Model and the Role of Group Communication, Fault-Tolerant Services.	CO4						

Learning	Resources
----------	-----------

Text Books

1. Distributed System: Concepts and Design, Coulouris, Dollimore, Kindberg, 2017, Pearson Education.

Reference Books

- 1. Distributed Operating System, Tanenbaum S, 2005, Pearson Education.
- 2. Distributed System: Concepts and Design, P K Sinha, 2008, PHI.
- 3. Advanced Concepts in Operating Systems, Mukesh Singhal & Niranjan G Shivaratri, 2017, Tata McGraw Hill

e- Resources & other digital material

- 1. www.distributedsystemscourse.com
- 2. https://ocw.mit.edu/
- 3. https://cgi.luddy.indiana.edu/~prateeks/dist-sys-course.html
- 4. https://archive.nptel.ac.in/courses/106/106/106106168/
- 5. https://onlinecourses.nptel.ac.in/noc21_cs87/preview