PRASAD V. POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous) Kanuru, Vijayawada-520007

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (Data Science)

III B. Tech – II Semester CSE (Data Science)

Deep Learning

Course Code	20DS3603	Year	III	Semester	II
Course Category	PCC	Branch	CSE(Data Science)	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	Machine Learning
Continuous Internal Evaluation		Semester End Examination	70	Total Marks	100

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Describe the fundamental concepts, architectures, and applications of deep learning.	L2				
CO2	Apply convolutional neural networks (CNNs) and deep convolutional neural network architectures to solve computer vision tasks.	L3				
CO3	Apply recurrent neural networks (RNNs), and Generative Adversarial Networks (GANs), to solve natural language processing, and image-to-image translation tasks.	L3				
CO4	Analyze the performance of deep learning architectures, including CNNs, RNNs, and GANs, for various tasks in computer vision, natural language processing, and generative modeling.					

Contribution of Course Outcomes towards achievement of Program Outcomes&														
	Strength of correlations (3: High,2: Medium, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2	3											1	3	
CO3	3											1	3	
CO4		3										3		

Syllabus						
Unit No.	Contents					
I	Introduction to Deep Learning: Overview of artificial neural networks, Deep neural networks, Differences between machine learning and deep learning, Deep Learning Architectures, Activation Functions, Loss Functions, Optimization Techniques, Overfitting, Underfitting, Regularization, Normalization, Applications of Deep Learning.	CO1				
II	Convolutional Neural Networks (CNNs): Introduction to CNNs, Convolution Operation, Basic Convolution Function, Convolutional Layers, Filters, Pooling Operation, Pooling Layers, Padding, Stride, Sparse Connectivity and Weigh Sharing, Fully Connected Layers, Training CNNs, Normalization and Dropout Hyperparameter Tuning, understanding LeNet Architecture, Training, Parameters Applications of CNN.	CO1, CO2, CO4				
Ш	Pre-trained Deep Convolutional Neural Networks: AlexNet, VGGNet, GoogLeNet, ResNet, Inception, MobileNet Architectures.	CO1, CO2, CO4				
IV	Transfer Learning: Introduction, What is Transfer Learning, advantages of Pretrained Models, different ways to Fine Tune the Model Recurrent Neural Networks (RNNs): Overview of RNNs, Gated Recurrent Units (GRUs), Bidirectional RNNs, Encoder-Decoder Architecture, Attention Mechanisms, Applications.	CO1, CO3, CO4				
v	Generative Adversarial Networks (GANs): Introduction to GANs, Generative Models, GAN Architecture (Generator and Discriminator), GAN Training and Optimization, Conditional GANs, Deep Convolutional GANs (DCGANs), Cycle-Consistent GANs (CycleGANs), Applications.	CO1, CO3, CO4				

Learning Resources

Text Books

- 1. Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville, 2016, MIT Press
- 2. Dive into Deep Learning, By Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, 2024, Cambridge University Press

Reference Books

- 1. Machine Learning, Tom M. Mitchell, First Edition, 2017, McGraw Hill Education
- 2. Machine Learning for Absolute Beginners, Oliver Theobald, Third Edition, 2024, Sanage Publishing House LLP
- 3. Machine Learning: A Probabilistic Perspective, Kevin P. Murphy, 2012, MIT Press

e- Resources & other digital material

- 1. Deep Learning: https://deeplearning.mit.edu/
- 2. Deep Learning: https://nptel.ac.in/courses/106106184
- 3. Deep Learning https://nptel.ac.in/courses/106105215