Code: 20AM3503, 20DS3503

III B.Tech - I Semester - Regular Examinations - NOVEMBER 2024

COMPUTER NETWORKS

(Common for AIML, DS)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.			
					Marks			
UNIT-I								
1	a)	Generalize LAN, WAN and MAN.	L2	CO1	7 M			
	b)	Write a short note on unguided media used	L2	CO1	7 M			
		for data transmission.						
OR								
2	Exp	plain briefly TCP/IP reference model with a	L2	CO1	14 M			
	neat diagram and differentiate between OSI and							
	TCP/IP reference models in detail.							
		UNIT-II						
3	a)	With the aid of suitable examples, describe	L2	CO1	7 M			
		the framing techniques used in data link						
		layer.						
	b)	Differentiate pure aloha and slotted aloha	L3	CO2	7 M			
		with examples.						
OR								

4	a)	State High-level Data Link Control (HDLC)	L2	CO1	7 M			
		protocol in detail.						
	b)	Illustrate the working procedure of	L3	CO2	7 M			
		CSMA/CD protocol with an example.						
UNIT-III								
5	As	ISP is given a block of addresses beginning	L3	CO3	14 M			
	wit	h 190.100.0.0/16. The ISP needs to distribute						
	thes							
	follows.							
	i) Group 1 has 64 customers each needs 256							
	addresses							
	ii) Group 2 has 128 customers each needs 128							
	addresses							
	iii) Group 3 has 128 customers each needs 64							
	addresses							
	Sketch the sub-block network and give the slash							
	not	ation for each sub-block network. Specify the						
	broadcast and network address of each sub-							
	block network and also compute the remaining							
	IP a	addresses after these allocations?						
	1	OR						
6	a)	Explain the working procedure of DHCP	L2	CO2	7 M			
		and also discuss its header format.						
	b)	Illustrate link-state routing algorithm with	L3	CO3	7 M			
		an example.						
TIMITED TT7								
7	0)	UNIT-IV Evaluin TCP connection management with	ΙΛ	CO4	7 M			
'	a)	Explain TCP connection management with a diagram.	L4		/ 1VI			
		a ulagialli.						

	1 \	D ' C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ΤΛ	001	7 1 1				
	b)	Brief on the approaches used to provide	L2	CO1	7 M				
		Quality of Service (QoS) in transport layer.							
	OR								
8	a)	Compare and contrast Go-Back-N and	L4	CO4	7 M				
		Selective-repeat protocols in transport layer.							
	b)	Summarize the services and applications of	L2	CO1	7 M				
		UDP protocol in transport layer.							
UNIT-V									
9	a)	Summarize how SMTP transfers message	L2	CO1	7 M				
		from one host to another host with suitable							
		illustration.							
	b)	Explain various HTTP request operations.	L2	CO1	7 M				
	OR								
10	a)	Write your understanding of File Transfer	L2	CO1	7 M				
		Protocol.							
	b)	Explain the functionalities performed by	L2	CO1	7 M				
		DNS and also discuss the same with an							
		example.							