III B.Tech - I Semester - Regular Examinations - NOVEMBER 2024

MACHINE LEARNING (Common for AIML, DS)

Duration: 3 hours	Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max.						
					Marks						
		UNIT-I									
1	a)	Distinguish reinforcement learning from	L2	CO1	7 M						
		Supervised learning along with examples.									
	b)	Differentiate Overfitting and Underfitting.	L2	CO1	7 M						
		OR									
2	a)	Describe the step by step process of End to	L2	CO1	7 M						
		End Machine Learning Project.									
	b)	Discuss the key challenges in machine	L2	CO1	7 M						
		learning, and how can they affect the									
		development of models.									
		UNIT-II									
3	Yo	u are given with some data points as shown in	L4	CO4	14 M						
	the	table below. The points represents a linear									
	rela	ationship between two variables, x and y. The									
	task is to find the best-fit line using linear										
	regression.										

		v	1	2	3	1	5	6	7	8	0	1()			
			1	$\frac{2}{4}$	5	4 1	5	7	/ 8	8	9 10	11))			
		У		-	5	-	5	/	0	0	10	14	<u> </u>			
	i)	T	lse 1	line	ar re	ores	sior	n to ⁻	find	line	of	hes	t fit			
v=mx+h																
ii) Calculate MSE																
iii) Plot best-fit line along with the data points																
		Ś	how	n i	n th	ie ta	ble.	Us	ing	the	reg	res	sion			
		n	node	el, p	ored	ict t	he v	valu	e of	fy,	for	a	new			
		d	ata	poin	nt x=	=11.				•						
	<u> </u>			-											1	<u> </u>
									OR							
4	a)	Ex	plai	n th	ne c	onc	ept	of]	logi	stic	regi	res	sion.	L2	CO2	7 M
		Ho	w	loes	it	diff	er f	rom	lin	ear	regi	res	sion,			
		and	l wł	ny is	s it s	uita	ble f	or b	oinar	ry cl	assi	fica	ation			
		pro	blei	ms?												
	b)	Wł	nat a	are t	he k	key (eval	uatio	on n	netri	ics u	ise	d for	L2	CO2	7 M
		bin	ary	cla	ssifi	icati	on	mod	lels?	'Di	scus	SS	their			
	importance, how they are calculated, and ir								id in							
		wh	at so	cena	rios	s eac	h m	etric	c is i	mos	t use	efu				
			11	1 .			•		ЛТ -	-111				T 4	004	1435
5		sma	all c	latas	set (cont	ains	the	e mo	easu	rem	ent	s of	L4	CO4	14 M
	different fruits. The dataset includes the															
		10W	ing	reat	ures	for	eacl	n fru	11t:							
		eigh	t (g	ram	1S)											
	512 F ~	æ (C i≁ ′	III) Frm	о (Т	oho	.	\nn1	0.0*	\mathbf{O}) 11 ~ ~						
	I , I,	uit	тур	C (L	ave	IJ. F	zhhi		Ul	inge	;					

	Yo	our task is to clas	an				
	apj	ple or an orange	ze				
	usi	ng the K-N	N)				
	alg	orithm. The data					
		Weight(grams)					
		150					
		160	7.5	Apple			
		170	8	Apple			
		180	8.5	Apple			
		200	9	Orange			
		210	9.5	Orange			
		220	10	Orange			
		230					
	Ex pre	 i) Use KNN a type based of type based of ii) Experiment (eg: K=1,3,5) iii) Predict the typoint with w 9 cm. plain how the edictions. 	uit <i>K</i> tta of he				
	•		Ol	R	·		
6	a)	What are the	different typ	pes of distan	ce L2	CO2	7 M
		metrics used	nd				
		discuss how	lel				
		performance? I	ch				
		each metric is m					

	b)	Explain the concept of margin in a Support	L2	CO2	7 M					
		Vector Machine (SVM), and why is it								
		important for the performance of the model?								
	UNIT-IV									
7	Wl	nat is a perceptron in machine learning and	L2	CO3	14 M					
	deı	nonstrate it's working for binary								
	cla	ssification? Explain the key components of								
	the	perceptron model and describe the training								
	pro	cess, including the role of the learning rate.								
		OR		II						
8	Wl	nat is a FeedForward neural network?	L2	CO3	14 M					
	De	scribe the key components of a FeedForward								
	nei	aral network and demonstrate the process of								
	for	ward propagation through the network.								
		UNIT-V								
9	a)	What is ensemble learning? Briefly illustrate	L2	CO3	7 M					
		the advantages of ensemble methods.								
	b)	Illustrate how Long Short Term Memory	L3	CO3	7 M					
		(LSTM) addresses the limitations of								
		traditional Recurrent Neural Networks								
		(RNNs), particularly in handling long-term								
		dependencies and mitigating the vanishing								
		gradient problem.								
	OR									
10	De	monstrate Random Forest Algorithm and how	L2	CO3	14 M					
	do	es it utilize multiple decision trees to make								
	predictions? Explain the process of how									
	pre	dictions are made using a Random Forest.								