Code: 20CS3403, 20IT3403, 20AM3403, 20DS3403

II B.Tech - II Semester – Supplementary Examinations NOVEMBER 2024

DESIGN AND ANALYSIS OF ALGORITHMS (Common for CSE, IT, AIML, DS)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>			
1.	a)	Explain the notion of an algorithm. Provide examples	7 M
		of real-world problems where algorithms play a crucial	
		role.	
	b)	Given an algorithm with a time complexity expressed in	7 M
		Big O notation, analyze its efficiency.	
	OR		
2.	a)	Classify algorithms into basic efficiency classes	8 M
		(constant time, logarithmic time, linear time,	
		polynomial time, exponential time). Provide examples	
		for each class and discuss the implications of their	
		efficiency.	
	b)	Give an example of a problem where brute force	6 M
		technique can be applied to obtain a solution but not an	
		optimal solution.	
<u>UNIT – II</u>			
3.	a)	Illustrate the Strassen's Matrix multiplication algorithm	8 M
		with an appropriate example and bring out the divide	
		and conquer methodology.	

	b)	Write an algorithm using the divide and conquer approach to find the maximum element in a given array of integers.	6 M	
	1	OR		
4.	a)	Illustrate the Binary Search algorithm with your own	8 M	
		example. What is the required condition for Binary		
		Search algorithm to be applied on an array of integers?		
	b)	Write the Merge Sort algorithm and illustrate the same	6 M	
		with an example of your own.		
	<u>UNIT-III</u>			
5.	a)	Apply the Prim's algorithm on the following graph to	7 M	
		obtain a Minimum spanning tree.		
		A 10 A 6 15 7 7 3 $c3$ b 1210 c		
	b)	Write an algorithm for the Job Sequencing Problem and	7 M	
		illustrate the same with an example of your own.		
OR				
6.	a)	For the given network, apply the Dijkstra's algorithm to	7 M	
		find the shortest paths originating from node 1 to all		
		other nodes.		

		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	b)	What is the Minimum coin change problem? Explain	7 M
		with an example and give an algorithm that will find a	
		solution to the problem. Will your algorithm output an	
		optimal solution?	
<u>UNIT – IV</u>			
7.	a)	Illustrate with your own example the dynamic programming solution to the all-pair shortest paths problem.	8 M
	b)	Write a brief note on dynamic programming and explain the concept with an example.	6 M
		OR	
8.	a)	Define the Travelling salesman problem with an example. Illustrate how the dynamic programming approach can obtain a solution for the travelling salesman problem.	7 M
	b)	Illustrate how dynamic programming method is applied on the Optimal Binary search tree problem with your own example. Bring out the dynamic programming methodology through your illustration.	7 M

		$\underline{\mathbf{UNIT}} - \mathbf{V}$	
9.	a)	Explain the concept of backtracking in your own words	7 M
		using your own example.	
	b)	Give a real time example of a problem that can be	7 M
		solved using branch and bound technique. Illustrate the	
		methodology using the same example.	
		OR	
10.	a)	What is an NP-Complete problem? How do you show	7 M
		that a problem belongs to the class NP-Complete?	
	b)	Illustrate and bring out the difference between P and	7 M
		NP in your own words using your own examples.	