Page **1** of **4**

Code: 20AM3402, 20DS3402

II B.Tech - II Semester – Regular Examinations MAY - 2024

DATABASE MANAGEMENT SYSTEMS (Common for AIML, DS)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max.	
					Marks	
		UNIT-I				
1	a)	Compare and contrast centralized and	L2	CO1	7 M	
		client-server architectures in the context of				
		Database Management Systems.				
	b)	Discuss the role of data independence and	L2	CO1	7 M	
		how it is achieved in the database approach.				
OR						
2	a)	Define the components of a database system	L2	CO1	7 M	
		environment, including hardware, software,				
		data, procedures, and users. Discuss the				
		interdependence of these components and				
		their roles in ensuring the proper				
		functioning of a database system.				
	b)	Evaluate the importance of query languages	L2	CO1	7 M	
		and their impact on database usability.				

Max. Marks: 70

UNIT-II						
3	a)	Define and differentiate between entity	L3	CO2	7 M	
		types and entity sets in the context of the				
		Entity-Relationship Model. Discuss the role				
		of attributes and keys in defining the				
		characteristics and uniqueness of entities				
		within a database.				
	b)	Explore the use of roles and structural	L3	CO2	7 M	
		constraints in refining relationships and				
		ensuring accurate data representation.				
	•	OR				
4	a)	Discuss the steps involved in transforming	L3	CO2	7 M	
		entity types, relationship types, and				
		attributes into tables, keys, and constraints.				
	b)	Analyze the importance of feedback and	L3	CO2	7 M	
		revisions in the design refinement process.				
	1	UNIT-III				
5	a)	Explore relational algebra operations	L3	CO2	7 M	
		inspired by set theory, such as UNION,				
		INTERSECT, and DIFFERENCE. Discuss				
		how these operations can be used to				
		combine and compare relations.				
	b)	Define the key concepts of the relational	L3	CO2	7 M	
		model, including relations, attributes and				
		tuples. Discuss the significance of primary				
		keys and foreign keys in maintaining data				
		integrity within a relational database.				
OR						

6	a)	Provide examples of how constraints can be	L3	CO2	7 M	
		specified during the creation of tables in				
		SQL. Discuss the importance of constraints				
		in enforcing data integrity and ensuring				
		consistency in a relational database.				
	b)	Define and explain the concept of views in	L3	CO2	7 M	
	,	SQL. Discuss the advantages of using views				
		and provide examples of scenarios where				
		views can enhance data accessibility and				
		security.				
		UNIT-IV				
7	a)	Define Fifth Normal Form (5NF) and	L3	CO3	7 M	
		discuss how it deals with join dependencies.				
	b)	Discuss the challenges and benefits	L3	CO3	7 M	
		associated with implementing				
		normalization.				
	OR					
8	a)	Consider the Universal Relation A(P, Q, R,	L3	CO3	7 M	
		S, T) and the set of functional dependencies.				
		P→QR				
		$RS \rightarrow T$				
		$Q \rightarrow S$				
		i) List the condidate keys				
		i) Is it in the 2 NF?				
		iii) Is it in 3 NF?				
	b)	Define Boyce-Codd Normal Form (BCNF)	L3	CO3	7 M	
		and explain the conditions that must be				
		satisfied for a relation to be in BCNF.				

UNIT-V					
9	a)	Discuss the criteria for characterizing	L2	CO1	7 M
		schedules based on their recoverability and			
		serializability properties.			
	b)	Explain the shadow paging technique for	L2	CO1	7 M
		recovery. Discuss the steps involved in			
		implementing shadow paging and its			
		advantages in terms of simplicity and			
		efficiency.			
OR					
10	a)	Explain the principles of the Two-Phase	L2	CO1	7 M
		Locking (2PL) protocol. Discuss the types			
		of locks used in 2PL and their role in			
		preventing conflicts among concurrent			
		transactions.			
	b)	Elaborate on the concept of a transaction	L2	CO1	7 M
		and its characteristics. Discuss how			
		transactions interact with the larger system			
		and the implications for data integrity.			