II B.Tech - II Semester – Regular Examinations - MAY 2024

SOFTWARE ENGINEERING (Common for AIML, DS)

Duration: 3 hours	Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks
	UNIT-I				
1	a)	Compare and contrast the Perspective Process Models and the Unified Process Model in terms of their approach to software development lifecycle management.	L2	CO1	7 M
	b)	Which aspects of each model make them suitable for different project types or sizes?	L2	CO1	7 M
2	a)	Investigate the role of customer feedback in the Agile model and its influence on product evolution.	L3	CO2	7 M
	b)	Briefly explain about Extreme Programming.	L2	CO1	7 M

		UNIT-II			
3	a)	Discuss the strategic importance of stakeholder involvement in the Requirements Engineering process.	L2	CO1	8 M
	b)	How can organizations ensure meaningful stakeholder engagement throughout the software development lifecycle, and what benefits does this involvement yield?	L2	CO1	6 M
		OR			
4	a)	Analyze the practical utility of usecases in Requirements Engineering.	L4	CO4	7 M
	b)	How do usecases facilitate requirements elicitation, validation, and verification processes, and how can they be tailored to different project contexts?	L2	CO1	7 M
		UNIT-III	I		
5	a)	Evaluate the evolution of the design process.	L4	CO4	6 M
	b)	How do Design concepts contribute to the improvement of designs in the design engineering?	L2	CO1	8 M
		OR			
6	a)	Analyze the relationship between software architecture and system quality attributes, such as performance, reliability and security.	L4	CO4	8 M
	b)	How do architectural decisions impact the above attributes, and what strategies can architects employ to balance competing quality requirements during the design of architecture styles?	L2	CO1	6 M

7	-)	UNIT-IV	T A	<u>CO1</u>	7 14
7	a)	Analyze the role of system testing in the	L4	CO4	7 M
	1-)	software development lifecycle.	1.0	<u>CO1</u>	7 14
	b)	How does system testing ensure that the	L2	CO1	7 M
		integrated components of a software			
		system function correctly together, and what techniques can be used to verify			
		system behavior under various operating			
		conditions and user scenarios?			
		OR			
8	a)	Evaluate the impact of test strategies for	L4	CO4	7 M
	u)	Object oriented software.	LT	0.04	/ 111
	b)	Discuss about Black box testing.	L2	CO1	7 M
	/				
		UNIT-V			
9	a)	Evaluate the effectiveness of reactive and	L4	CO4	7 M
		proactive risk management strategies in			
		Software development projects.			
	b)	Discuss about RMMM plan and various	L2	CO1	7 M
		components of Risk Information Sheet.			
		OR			
10	a)	Compare and contrast statistical software	L4	CO4	6 M
		quality assurance techniques with			
		traditional inspection-based approaches.			
	b)	How do statistical SQA methods, provide	L2	CO1	8 M
		insights into process performance and			
		product quality that complement			
		traditional inspection-based techniques?			