Code: 20ES1307

II B.Tech - I Semester - Regular Examinations - DECEMBER 2023

FOUNDATIONS OF ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE & MACHINE LEARNING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max. Marks				
	UNIT-I								
1	a)	Briefly discuss about History of AI.	L2	CO1	7 M				
	b)	List all Agent Types of AI and explain them	L2	CO1	7 M				
		with an examples.							
	•	OR							
2	a)	Describe the PEAS concept in terms of	L2	CO1	7 M				
		Self-driving cars.							
	b)	Explain foundations of AI. And Write	L2	CO1	7 M				
		Applications of AI.							
UNIT-II									
3	a)	Define General Problem Solving. Solve	L3	CO2	7 M				
		Towers of Hanoi problem using any							
		uninformed (BFS, DFS) Algorithm.							
		Source Intermediate Target Peg Peg Peg							

	b)	Write about Problem Reduction. Solve the	L3	CO2	7 M		
		below graph using A* algorithm.					
		(4) (B) (2) (D) (3) (E) (F) (H) (T) (1) (6) (8) (2) (0) (0) (0)					
		OR					
4	a)	Describe uninformed search. Illustrate any	L3	CO2	7 M		
		one uninformed search algorithm with an					
		example.					
	b)	Analyze Alpha Beta pruning problem with an	L4	CO4	7 M		
		example.					
UNIT-III							
5	a)	Describe a procedure for converting a	L2	CO1	7 M		
		sentence to CNF with an example.					
	b)	Apply Inference Resolution rule by using the	L3	CO2	7 M		
		below examples					
		i. John likes all kind of food.					
		ii. Apple and vegetable are food					
		iii. Anything anyone eats and not killed is					
		food.					
		iv. Anil eats peanuts and still alive					
		v. Harry eats everything that Anil eats.					
		Prove by resolution that: John likes peanuts.					
OR							

6	a)	Demonstrate Forward chaining and Backward	L3	CO2	7 M			
		chaining for proportional definite clauses.						
	b)	Distinguish Prepositional logic with Predicate	L4	CO4	7 M			
		logic.						
UNIT-IV								
7	a)	Describe the Role of Planning in Artificial	L2	CO1	7 M			
		Intelligence.						
	b)	Illustrate the Forward State Space Planning	L3	CO3	7 M			
		and Backward Space Planning with						
		Advantages and Disadvantages.						
		OR						
8	a)	Explain Hierarchical planning with example.	L2	CO1	7 M			
	b)	Analyze the planning methodology used by	L4	CO4	7 M			
		STRIPS in detail.						
UNIT-V								
9	a)	What is ANN and briefly explain about the	L2	CO1	7 M			
		structure of artificial neural network with a						
		diagram.						
	b)		L3	CO3	7 M			
		multi layered Neural Network with a neat						
		diagram.						
OR								
10	a)		L2	CO1	7 M			
		Unsupervised Learning.						
	b)		L3	CO3	7 M			
		linear models.						