II B.Tech - I Semester – Regular Examinations - DECEMBER 2023

COMPUTER ORGANIZATION (Common for AIML, DS)

Duration: 3 hours	Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max.	
					Marks	
	UNIT-I					
1	a)	List the shift micro operations and explain	L2	CO1	7 M	
		each in detail.				
	b)	Construct 4-bit binary adder with neat	L3	CO3	7 M	
		diagram.				
		OR				
2	a)	Explain 4-bit combinational circuit shifter	L2	CO1	7 M	
		with neat diagram.				
	b)	Construct a 4-bit combinational circuit	L3	CO3	7 M	
		decrementer using four full-adder circuits.				
UNIT-II						
3	a)	List and explain the significance of	L2	CO1	7 M	
		Registers of the basic computer in detail.				
	b)	Illustrate in detail about Input-Output	L3	CO2	7 M	
		instructions.				
	OR					

4	a)	What is the difference between a direct and	L2	CO1	7 M	
		an indirect address instruction? How many				
		references to memory are needed for each				
		type of instruction to bring an operand into a				
		processor register?				
	b)	Demonstrate the control gates associated	L3	CO2	7 M	
		with program counter (PC) in the basic				
		computer.				
				·		
		UNIT-III				
5	Wh	at is an addressing mode? Explain the	L2	CO1	14 M	
	var	ious addressing modes with suitable				
	examples.					
		OR				
6	Ass	sume yourself as a computer architect at TCS;	L2	CO1	14 M	
	you are assigned to compute the following					
	arithmetic expression in assembly language					
	using three, two, one, and zero address					
	instruction formats.					
	Y = (M + N/Z) * J - (P - Q) * (R + S).					
UNIT-IV						
7	a)	One of the leading manufacturers of cache	L2	CO1	7 M	
		memory got feedback from the customers				
		that the performance of their cache				
		memories is not up to the mark. The				
		manufacturing company assigned a team of				
		experts to improve the performance of it.				
		Here what are various possibilities the				

		experts will consider to improve the				
		performance of cache memory? Explain				
		these possibilities clearly with neat				
		diagrams.				
	b)	Assume 5-bit registers that hold signed	L4	CO4	7 M	
		numbers (+15) X (-13), multiplication				
		process using Booth Algorithm.				
	1	OR	1			
8	a)	Perform the operation $(-9) + (-6) = -15$, with	L2	CO1	7 M	
		binary numbers in signed -1's complement				
		representation using only five bits to				
		represent each number (including the sign).				
	b)	Consider the scenario given: 64-KB cache	L4	CO4	7 M	
		having 128-byte lines, It is a 4- way set-				
		associative cache. The system uses a 32-bit				
		address. Calculate the following:				
		i) How many lines and sets do the cache				
		have?				
		ii) How many entries will be there in the				
		tag?				
		iii) How many bits of the tag is required in				
		each entry in the tag?				
-				•		
	UNIT-V					
9	a)	Consider a scenario in which you are	L2	CO1	7 M	
		appointed as a computer system analyst.				
		Discuss direct memory access (DMA), the				
		interface transfers data into and out of the				
		memory.				

	b)	A processor manufacturing company	L4	CO4	7 M
		decided to improve the number of			
		instructions executed in a moment of time			
		for their processor. A team of engineers in			
		the company is started doing this job. They			
		found that the clock period decreases while			
		the number of pipeline stages increases in a			
		processor. Discuss the various reasons a			
		typical processor does not have			
		hundreds/thousands of pipeline stages for			
		the execution of the machine instructions.			
		OR			
10	a)	Consider the following Assembly language	L2	CO1	7 M
		code			
		<i>Sub</i> R2, R1, R3			
		And R12, R2, R5.			
		<i>Or</i> R13, R6, R2.			
		<i>Add</i> R14, R2, R2.			
		Identify the type of dependency and the			
		hazards encountered for the above assembly			
		language code.			
	b)	A computer architect is analyzing the	L4	CO4	7 M
		function of various architectures such as			
		SISD, SIMD, MISD, and MIMD. Discuss			
		the main differences the architect found			
		from these four architectures.			