Code: 20AM3303, 20DS3303

II B.Tech - I Semester – Regular Examinations DECEMBER 2023

DATA STRUCTURES (Common for AIML, DS)

Duration: 3 hours	Max. Marks: 70
Note: 1. This paper contains questions from 5 up	nits of Syllabus. Each unit carries
14 marks and have an internal choice o	of Questions.
2. All parts of Question must be answered	l in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max.	
					Marks	
	UNIT-I					
1	a)	What are the various ways in which data	L2	CO1	7 M	
		structures are classified and list the				
		applications of those data structures.				
	b)	Illustrate the Bubble Sort algorithm on the	L3	CO2	7 M	
		following array of integers:				
		23, 6, 12, 15, 4, 1, 18, 3				
OR						
2	a)	Explain the Time complexity and space	L3	CO1	7 M	
		complexity of the below code.				
		for (i=0; i <n; i++)<="" th=""><th></th><th></th><th></th></n;>				
		for (j=0; j <m; j++)<="" th=""><th></th><th></th><th></th></m;>				
		printf "PVPSIT"				
	b)	Illustrate the Merge Sort algorithm on the	L3	CO2	7 M	
		following array of integers: 12, 0, 24, 68,				
		15, 24, 47, 6, 21				

UNIT-II						
3	a)	Given a singly linked list L (not necessarily	L4	CO4	7 M	
		in sorted order), write a procedure to delete				
		a specific integer 'k' in L if it is present. If				
		the element is not found print "not found".				
		Illustrate the procedure with a suitable				
		example.				
	b)	Explain how a Queue can be implemented	L3	CO3	7 M	
		as a singly linked list.				
		OR				
4	a)	Explain the following operations on a	L3	CO3	8 M	
		doubly linked list with suitable examples:				
		i) Deletion of a node at the end of the list.				
		ii) Deletion of a node at a position k in the				
		middle of the list. Assume that k is a				
		value less than the length of the list.				
	b)	What is a Circular linked list? Explain the	L3	CO3	6 M	
		various operations that can be performed on				
		a circular linked list with suitable example.				
		UNIT-III		1 1		
5	a)	How can a Stack be implemented using	L3	CO3	8 M	
		Linked Lists. Give algorithms for Push and				
		Pop operations.				
	b)	Convert the given in-fix expression to post-	L3	CO3	6 M	
		fix expression				
		(A + B) * (C - D)				
OR						

6	a)	How can a Queue be implemented using	L3	CO3	7 M
		Arrays? Give algorithms for Enqueue and			
		De-Queue operations.			
	b)	Write the advantages of circular queues over	L3	CO3	7 M
		normal queues. Explain the operations of			
		circular queue with example.			
		UNIT-IV			
7	a)	Bring out the difference between a Binary	L2	CO1	6 M
		tree and a binary search tree with suitable			
		example of your own.			
	b)	Write and explain the traversal procedures	L3	CO3	8 M
		of a binary tree with a suitable example.			
		OR		·	
8	a)	Define a BST and write the algorithm of	L3	CO3	6 M
		insertion operation of an element 'k' into			
		the BST with an example.			
	b)	For the given BST in the following figure,	L4	CO4	8 M
		draw the resulting BST after the deletion of			
		each of the following elements in the order:			
		42, 41 and 98.			
		(73)			
		A2 . 98			
		S1 (6b) (89)			
		40			
		á ài			
		35)			

UNIT-V					
9	a)	Write the DFS algorithm with a suitable	L3	CO3	8 M
		example.			
	b)	Explain the representations of graph with	L2	CO3	6 M
		suitable example.			
		OR			
10	a)	Define the following with suitable	L2	CO1	6 M
		examples:			
		i) Directed Graphs			
		ii) Bi-Connected components			
	b)	Write the BFS algorithm and find out the	L3	CO3	8 M
		BFS sequence for the below graph.			