II B.Tech - I Semester – Regular Examinations - DECEMBER 2023

OPERATING SYSTEMS (Common for AIML, DS)

Duration: 3 hours Max. N

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	CO	Max.	
			DL		Marks	
	UNIT-I					
1	a)	Explain the purpose of system calls and	L2	CO1	7 M	
		discuss the calls related to device				
		management and communication in brief.				
	b)	Discuss about multiprocessor systems in	L2	CO1	7 M	
		detail with appropriate examples.				
		OR				
2	a)	Explain about operating system structures	L2	CO1	7 M	
		with neat diagram.				
	b)	Elucidate the important services of an	L2	CO1	7 M	
		operating system.				
		•				
UNIT-II						
3	a)	Explain the differences to which FCFS, RR	L4	CO4	7 M	
		and Non-preemptive SJF scheduling				
		algorithms, discriminate in favour of short				
		process.				

	1 \	T 11	T 4	001	7)(
	b)	Illustrate how scheduling algorithms are	L4	CO4	7 M
		selected for a system. What are the criteria			
		considered?			
		OR			
4	a)	What are threads? Discuss about different	L3	CO2	7 M
		types of threads. What resources are used			
		when a thread is created? How do they			
		differ from those used when a process is			
		created.			
	b)	Show with an example that Shortest Job	L4	CO4	7 M
		First scheduling does not necessarily give			
		the minimum waiting time for a set of jobs.			
		If the jobs arrive at different times. Do not			
		Use more than 3 jobs in your answer.			
				11	
		UNIT-III			
5	a)	A dentist has a consultancy room in his	L4	CO4	7 M
		residence. The room can accommodate ten			
		patients maximum. The doctor goes to			
		adjacent hall if no patients are waiting. The			
		patients also go back if all ten chairs are			
		occupied. If the doctor is available and			
		there are free chairs the patient occupies			
		one chair. If the doctor is in the adjoining			
		hall, patient calls him for consultancy.			
		Write an algorithm to synchronize both			
		doctor and patient.			
		r r r r r r r r r r r r r r r r r r r			

	b)	What is a monitor? Write a monitor	L3	CO3	7 M			
		solution to dining philosopher 16 problem						
		and discuss.						
	OR							
6	a)	How does a deadlock can be avoided using	L3	CO3	7 M			
		Banker's algorithms?						
	b)	Discuss in details the critical section	L3	CO3	7 M			
		problem and also write the algorithms for						
		Readers – Writers problems with						
		semaphores.						
	L							
		UNIT-IV						
7	a)	Explain the principles of segmented and	L2	CO1	7 M			
		paged implementation of memory with a						
		diagram.						
	b)	Explain about contiguous memory	L2	CO1	7 M			
		allocation with neat diagram.						
		OR						
8	a)	Explain the structure of the page table.	L2	CO1	7 M			
	b)	Explain the concept of demand paging and	L2	CO1	7 M			
		the performance issue of demand paging.						
		UNIT-V						
9	a)	Write a detailed note on various file access	L3	CO2	7 M			
		methods with neat sketch.						
	b)	Discuss the different file allocation	L2	CO1	7 M			
		methods with suitable example.						

	OR						
10	a)	Why disk scheduling is necessary? Explain	L4	CO4	7 M		
		the different seek optimization techniques.					
	b)	Explain	L2	CO1	7 M		
		i) File attributes.					
		ii) File operations.					